These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35876747)

  • 21. Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease.
    Petriz BA; Franco OL
    Front Chem; 2017; 5():4. PubMed ID: 28184370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metaproteomic Analysis of Biogas Plants: A Complete Workflow from Lab to Bioinformatics.
    Heyer R; Schallert K; Briza M; Benndorf D
    Methods Mol Biol; 2024; 2820():99-113. PubMed ID: 38941018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Throughput Profiling of Root-Associated Microbial Communities.
    Getzke F; Hacquard S
    Methods Mol Biol; 2022; 2494():325-337. PubMed ID: 35467218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth.
    Bourceret A; Guan R; Dorau K; Mansfeldt T; Omidbakhshfard A; Medeiros DB; Fernie AR; Hofmann J; Sonnewald U; Mayer J; Gerlach N; Bucher M; Garrido-Oter R; Spaepen S; Schulze-Lefert P
    mBio; 2022 Apr; 13(2):e0258421. PubMed ID: 35258335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sample Processing for Metaproteomic Analysis of Human Gut Microbiota.
    García-Durán C; Martínez-López R; Monteoliva L; Gil C
    Methods Mol Biol; 2022; 2420():53-61. PubMed ID: 34905165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gnotobiotic Plant Systems for Reconstitution and Functional Studies of the Root Microbiota.
    Ma KW; Ordon J; Schulze-Lefert P
    Curr Protoc; 2022 Feb; 2(2):e362. PubMed ID: 35120282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics.
    Tanca A; Deledda MA; De Diego L; Abbondio M; Uzzau S
    mSystems; 2024 Jun; ():e0066124. PubMed ID: 38934547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.
    Zhang Y; Xu J; Riera N; Jin T; Li J; Wang N
    Microbiome; 2017 Aug; 5(1):97. PubMed ID: 28797279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species.
    Stamboulian M; Canderan J; Ye Y
    PLoS Comput Biol; 2022 Mar; 18(3):e1009397. PubMed ID: 35302987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut.
    Xiong W; Giannone RJ; Morowitz MJ; Banfield JF; Hettich RL
    J Proteome Res; 2015 Jan; 14(1):133-41. PubMed ID: 25350865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metaproteomic strategies and applications for gut microbial research.
    Xiao M; Yang J; Feng Y; Zhu Y; Chai X; Wang Y
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3077-3088. PubMed ID: 28293710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Metaproteomics Approach for the Study of Human Microbiomes.
    Zhang X; Chen W; Ning Z; Mayne J; Mack D; Stintzi A; Tian R; Figeys D
    Anal Chem; 2017 Sep; 89(17):9407-9415. PubMed ID: 28749657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity- and Enrichment-Based Metaproteomics Insights into Active Urease from the Rumen Microbiota of Cattle.
    Zhang X; Xiong Z; Li M; Zheng N; Zhao S; Wang J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An optimized metaproteomics protocol for a holistic taxonomic and functional characterization of microbial communities from marine particles.
    Schultz D; Zühlke D; Bernhardt J; Francis TB; Albrecht D; Hirschfeld C; Markert S; Riedel K
    Environ Microbiol Rep; 2020 Aug; 12(4):367-376. PubMed ID: 32281239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. More Is Not Always Better: Evaluation of 1D and 2D-LC-MS/MS Methods for Metaproteomics.
    Hinzke T; Kouris A; Hughes RA; Strous M; Kleiner M
    Front Microbiol; 2019; 10():238. PubMed ID: 30837968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIP-Metaproteomics: Linking Microbial Taxonomy, Function, and Activity.
    Taubert M
    Methods Mol Biol; 2019; 2046():57-69. PubMed ID: 31407296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A straightforward and efficient analytical pipeline for metaproteome characterization.
    Tanca A; Palomba A; Pisanu S; Deligios M; Fraumene C; Manghina V; Pagnozzi D; Addis MF; Uzzau S
    Microbiome; 2014; 2(1):49. PubMed ID: 25516796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metaproteomic Analysis of Fecal Samples from Human Subjects and Rodent Models.
    Tanca A; Palomba A
    Methods Mol Biol; 2024; 2820():115-125. PubMed ID: 38941019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct cellular lysis/protein extraction protocol for soil metaproteomics.
    Chourey K; Jansson J; VerBerkmoes N; Shah M; Chavarria KL; Tom LM; Brodie EL; Hettich RL
    J Proteome Res; 2010 Dec; 9(12):6615-22. PubMed ID: 20954746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore.
    Castano-Duque L; Helms A; Ali JG; Luthe DS
    J Chem Ecol; 2018 Aug; 44(7-8):727-745. PubMed ID: 29926336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.