These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35876790)

  • 1. Deep Learning vs Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening.
    Lehman CD; Mercaldo S; Lamb LR; King TA; Ellisen LW; Specht M; Tamimi RM
    J Natl Cancer Inst; 2022 Oct; 114(10):1355-1363. PubMed ID: 35876790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction.
    Yala A; Lehman C; Schuster T; Portnoi T; Barzilay R
    Radiology; 2019 Jul; 292(1):60-66. PubMed ID: 31063083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Diagnostic Accuracy of Mammogram-based Deep Learning and Traditional Breast Cancer Risk Models in Patients Who Underwent Supplemental Screening with MRI.
    Lamb LR; Mercaldo SF; Ghaderi K; Carney A; Lehman CD
    Radiology; 2023 Sep; 308(3):e223077. PubMed ID: 37724967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density.
    Brentnall AR; Cuzick J; Buist DSM; Bowles EJA
    JAMA Oncol; 2018 Sep; 4(9):e180174. PubMed ID: 29621362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Receiver Operating Characteristic (ROC) Curve Analysis for Tyrer-Cuzick and Gail in Breast Cancer Screening in Jiangxi Province, China.
    Zhang L; Jie Z; Xu S; Zhang L; Guo X
    Med Sci Monit; 2018 Aug; 24():5528-5532. PubMed ID: 30089770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Breast Cancer Risk-Assessment Models in a Large Mammography Cohort.
    McCarthy AM; Guan Z; Welch M; Griffin ME; Sippo DA; Deng Z; Coopey SB; Acar A; Semine A; Parmigiani G; Braun D; Hughes KS
    J Natl Cancer Inst; 2020 May; 112(5):489-497. PubMed ID: 31556450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning for Breast Cancer Risk Prediction: Application to a Large Representative UK Screening Cohort.
    Ellis S; Gomes S; Trumble M; Halling-Brown MD; Young KC; Chaudhry NS; Harris P; Warren LM
    Radiol Artif Intell; 2024 Jul; 6(4):e230431. PubMed ID: 38775671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study.
    Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J
    Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort.
    Brentnall AR; Harkness EF; Astley SM; Donnelly LS; Stavrinos P; Sampson S; Fox L; Sergeant JC; Harvie MN; Wilson M; Beetles U; Gadde S; Lim Y; Jain A; Bundred S; Barr N; Reece V; Howell A; Cuzick J; Evans DG
    Breast Cancer Res; 2015 Dec; 17(1):147. PubMed ID: 26627479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning modeling using normal mammograms for predicting breast cancer risk.
    Arefan D; Mohamed AA; Berg WA; Zuley ML; Sumkin JH; Wu S
    Med Phys; 2020 Jan; 47(1):110-118. PubMed ID: 31667873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms.
    Akselrod-Ballin A; Chorev M; Shoshan Y; Spiro A; Hazan A; Melamed R; Barkan E; Herzel E; Naor S; Karavani E; Koren G; Goldschmidt Y; Shalev V; Rosen-Zvi M; Guindy M
    Radiology; 2019 Aug; 292(2):331-342. PubMed ID: 31210611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of Estimated Lifetime Breast Cancer Risk Among Women Undergoing Screening Mammography.
    Niell BL; Augusto B; McIntyre M; Conley CC; Gerke T; Roetzheim R; Garcia J; Vadaparampil ST
    AJR Am J Roentgenol; 2021 Jul; 217(1):48-55. PubMed ID: 33978450
    [No Abstract]   [Full Text] [Related]  

  • 13. An integrated breast cancer risk assessment and management model based on fuzzy cognitive maps.
    Subramanian J; Karmegam A; Papageorgiou E; Papandrianos N; Vasukie A
    Comput Methods Programs Biomed; 2015 Mar; 118(3):280-97. PubMed ID: 25697987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Predicts Interval and Screening-detected Cancer from Screening Mammograms: A Case-Case-Control Study in 6369 Women.
    Zhu X; Wolfgruber TK; Leong L; Jensen M; Scott C; Winham S; Sadowski P; Vachon C; Kerlikowske K; Shepherd JA
    Radiology; 2021 Dec; 301(3):550-558. PubMed ID: 34491131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia.
    Boughey JC; Hartmann LC; Anderson SS; Degnim AC; Vierkant RA; Reynolds CA; Frost MH; Pankratz VS
    J Clin Oncol; 2010 Aug; 28(22):3591-6. PubMed ID: 20606088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Performance of an Image-Based Short-Term Risk Model for Breast Cancer.
    Eriksson M; Czene K; Vachon C; Conant EF; Hall P
    J Clin Oncol; 2023 May; 41(14):2536-2545. PubMed ID: 36930854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast cancer risk assessment across the risk continuum: genetic and nongenetic risk factors contributing to differential model performance.
    Quante AS; Whittemore AS; Shriver T; Strauch K; Terry MB
    Breast Cancer Res; 2012 Nov; 14(6):R144. PubMed ID: 23127309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward robust mammography-based models for breast cancer risk.
    Yala A; Mikhael PG; Strand F; Lin G; Smith K; Wan YL; Lamb L; Hughes K; Lehman C; Barzilay R
    Sci Transl Med; 2021 Jan; 13(578):. PubMed ID: 33504648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing breast cancer risk models in Marin County, a population with high rates of delayed childbirth.
    Powell M; Jamshidian F; Cheyne K; Nititham J; Prebil LA; Ereman R
    Clin Breast Cancer; 2014 Jun; 14(3):212-220.e1. PubMed ID: 24461459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inconsistent Performance of Deep Learning Models on Mammogram Classification.
    Wang X; Liang G; Zhang Y; Blanton H; Bessinger Z; Jacobs N
    J Am Coll Radiol; 2020 Jun; 17(6):796-803. PubMed ID: 32068005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.