These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35876858)

  • 1. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ELISL: early-late integrated synthetic lethality prediction in cancer.
    Tepeli YI; Seale C; Gonçalves JP
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38113447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic lethal connectivity and graph transformer improve synthetic lethality prediction.
    Fan K; Gökbağ B; Tang S; Li S; Huang Y; Wang L; Cheng L; Li L
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39210507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.
    Srihari S; Singla J; Wong L; Ragan MA
    Biol Direct; 2015 Oct; 10():57. PubMed ID: 26427375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
    Wang S; Feng Y; Liu X; Liu Y; Wu M; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii13-ii19. PubMed ID: 36124790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SL-Miner: a web server for mining evidence and prioritization of cancer-specific synthetic lethality.
    Liu X; Hu J; Zheng J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers.
    Das S; Deng X; Camphausen K; Shankavaram U
    Bioinformatics; 2019 Feb; 35(4):701-702. PubMed ID: 30059974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network.
    Lai M; Chen G; Yang H; Yang J; Jiang Z; Wu M; Zheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1731-1734. PubMed ID: 34891621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Link synthetic lethality to drug sensitivity of cancer cells.
    Wang R; Han Y; Zhao Z; Yang F; Chen T; Zhou W; Wang X; Qi L; Zhao W; Guo Z; Gu Y
    Brief Bioinform; 2019 Jul; 20(4):1295-1307. PubMed ID: 29300844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.