These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35877488)

  • 1. Gene Expression and Characterization of Iturin A Lipopeptide Biosurfactant from
    Yaraguppi DA; Bagewadi ZK; Mahanta N; Singh SP; Khan TMY; Deshpande SH; Soratur C; Das S; Saikia D
    Gels; 2022 Jun; 8(7):. PubMed ID: 35877488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and Application of Biosurfactant Produced by
    Ali N; Wang F; Xu B; Safdar B; Ullah A; Naveed M; Wang C; Rashid MT
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.
    Dhanarajan G; Rangarajan V; Bandi C; Dixit A; Das S; Ale K; Sen R
    J Biotechnol; 2017 Aug; 256():46-56. PubMed ID: 28499818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
    Zhang J; Xue Q; Gao H; Lai H; Wang P
    Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery.
    Varadavenkatesan T; Murty VR
    ISRN Microbiol; 2013; 2013():621519. PubMed ID: 24205445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Enterococcus faecium LM5.2 for lipopeptide biosurfactant production and its effect on the growth of maize (Zea mays L.).
    Chaurasia LK; Tirwa RK; Tamang B
    Arch Microbiol; 2022 Mar; 204(4):223. PubMed ID: 35347441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.
    Suthar H; Nerurkar A
    Appl Biochem Biotechnol; 2016 Sep; 180(2):248-60. PubMed ID: 27131876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Functional Insights into Iturin W, a Novel Lipopeptide Produced by the Deep-Sea Bacterium
    Zhou S; Liu G; Zheng R; Sun C; Wu S
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical optimization of antifungal iturin A production from
    Narendra Kumar P; Swapna TH; Khan MY; Reddy G; Hameeda B
    Saudi J Biol Sci; 2017 Nov; 24(7):1722-1740. PubMed ID: 30294240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.
    Deepak R; Jayapradha R
    J Mycol Med; 2015 Mar; 25(1):e15-24. PubMed ID: 25456418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation.
    Phulpoto IA; Yu Z; Hu B; Wang Y; Ndayisenga F; Li J; Liang H; Qazi MA
    Microb Cell Fact; 2020 Jul; 19(1):145. PubMed ID: 32690027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biosurfactant-producing novel bacterial strain isolated from vermicompost having multiple plant growth-promoting traits.
    Malakar C; Barman D; Kalita MC; Deka S
    J Basic Microbiol; 2023 Jul; 63(7):746-758. PubMed ID: 37058008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs.
    Wu B; Xiu J; Yu L; Huang L; Yi L; Ma Y
    Sci Rep; 2022 May; 12(1):7785. PubMed ID: 35546349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation.
    Balan SS; Kumar CG; Jayalakshmi S
    Microbiol Res; 2017 Jan; 194():1-9. PubMed ID: 27938857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline.
    Femina Carolin C; Senthil Kumar P; Chitra B; Fetcia Jackulin C; Ramamurthy R
    J Hazard Mater; 2021 Aug; 415():125716. PubMed ID: 34088195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity.
    Lee SC; Kim SH; Park IH; Chung SY; Choi YL
    Arch Microbiol; 2007 Oct; 188(4):307-12. PubMed ID: 17530228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production, Characterization, and Application of
    Joshi SJ; Al-Wahaibi YM; Al-Bahry SN; Elshafie AE; Al-Bemani AS; Al-Bahri A; Al-Mandhari MS
    Front Microbiol; 2016; 7():1853. PubMed ID: 27933041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Yield and Surface Tension-lowering Activity of Iturin A Produced by Bacillus subtilis RB14.
    Habe H; Taira T; Sato Y; Imura T; Ano T
    J Oleo Sci; 2019 Nov; 68(11):1157-1162. PubMed ID: 31611518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir.
    Youssef N; Simpson DR; Duncan KE; McInerney MJ; Folmsbee M; Fincher T; Knapp RM
    Appl Environ Microbiol; 2007 Feb; 73(4):1239-47. PubMed ID: 17172458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipopeptide production by Bacillus subtilis R1 and its possible applications.
    Jha SS; Joshi SJ; S J G
    Braz J Microbiol; 2016; 47(4):955-964. PubMed ID: 27520530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.