These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35877842)

  • 1. Wicking in Porous Polymeric Membranes: Determination of an Effective Capillary Radius to Predict the Flow Behavior in Lateral Flow Assays.
    Altschuh P; Kunz W; Bremerich M; Reiter A; Selzer M; Nestler B
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of Capillary Radius and Contact Angle within Porous Media.
    Ravi S; Dharmarajan R; Moghaddam S
    Langmuir; 2015 Dec; 31(47):12954-9. PubMed ID: 26538412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries.
    Ma B
    Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study on Capillary Microflows in High Porosity Open-Cell Metal Foams.
    Yang H; Yang Y; Ma B; Zhu Y
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wicking through complex interfaces at interlacing yarns.
    Fischer R; Schlepütz CM; Rossi RM; Derome D; Carmeliet J
    J Colloid Interface Sci; 2022 Nov; 626():416-425. PubMed ID: 35803141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the wicking rate of nitrocellulose membranes from recipe data: a case study using ANN at a membrane manufacturing in South Korea.
    Dissanayake J; Kang SB; Park J; Yinbao F; Park S; Lee MH
    Anal Sci; 2024 May; 40(5):907-915. PubMed ID: 38598050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attaining Tailored Wicking Behavior with Additive Manufacturing.
    Noce E; Zobayed I; Fontenot RJ; Jumet B; Rasheed RM; Turrubiantes J; Preston DJ
    Langmuir; 2024 Aug; ():. PubMed ID: 39152911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels.
    Verma S; Toley BJ
    Langmuir; 2024 Jun; 40(22):11419-11427. PubMed ID: 38770942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wicking dynamics in yarns.
    Fischer R; Schlepütz CM; Zhao J; Boillat P; Hegemann D; Rossi RM; Derome D; Carmeliet J
    J Colloid Interface Sci; 2022 Nov; 625():1-11. PubMed ID: 35714401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip.
    Ruiz-García I; Escobedo P; Ramos-Lorente CE; Erenas MM; Capitán-Vallvey LF; Carvajal MA; Palma AJ; López-Ruiz N
    Lab Chip; 2023 Sep; 23(18):4092-4103. PubMed ID: 37615614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow Physics of Wicking into Woven Screens with Hybrid Micro-/Nanoporous Structures.
    Wang Y; Lin Y; Yang G; Wu J
    Langmuir; 2021 Feb; 37(7):2289-2297. PubMed ID: 33571408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid Wicking in a Paper Strip: An Experimental and Numerical Study.
    Patari S; Mahapatra PS
    ACS Omega; 2020 Sep; 5(36):22931-22939. PubMed ID: 32954142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous micropillar structures for retaining low surface tension liquids.
    Agonafer DD; Lee H; Vasquez PA; Won Y; Jung KW; Lingamneni S; Ma B; Shan L; Shuai S; Du Z; Maitra T; Palko JW; Goodson KE
    J Colloid Interface Sci; 2018 Mar; 514():316-327. PubMed ID: 29275250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary Rise in Granitic Rocks: Interpretation of Kinetics on the Basis of Pore Structure.
    Mosquera MJ; Rivas T; Prieto B; Silva B
    J Colloid Interface Sci; 2000 Feb; 222(1):41-45. PubMed ID: 10655122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures.
    Ravi S; Dharmarajan R; Moghaddam S
    Langmuir; 2016 Aug; 32(33):8289-97. PubMed ID: 27458050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets.
    Kalogianni EP; Savopoulos T; Karapantsios TD; Raphaelides SN
    Colloids Surf B Biointerfaces; 2004 Jun; 35(3-4):159-67. PubMed ID: 15261027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wicking Enhancement in Three-Dimensional Hierarchical Nanostructures.
    Wang Z; Zhao J; Bagal A; Dandley EC; Oldham CJ; Fang T; Parsons GN; Chang CH
    Langmuir; 2016 Aug; 32(32):8029-33. PubMed ID: 27459627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and stability of two-potential flows in the porous media.
    Markicevic B; Bijeljic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.