These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35878036)

  • 21. High-Purity Graphitic Carbon for Energy Storage: Sustainable Electrochemical Conversion from Petroleum Coke.
    Zhu F; Song WL; Ge J; Wang Z; Huang Z; Li S; Wang M; Zuo H; Jiao S; Zhu H
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205269. PubMed ID: 36683158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen.
    Fan Z; Xiao W
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7664-7668. PubMed ID: 33427374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell.
    Ni G; Harnawan P; Seidel L; Ter Heijne A; Sleutels T; Buisman CJN; Dopson M
    J Hazard Mater; 2019 Feb; 363():197-204. PubMed ID: 30308358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of copper ions on transformation of organic sulfur in cationic exchange resins in Li
    Zhang Z; Xue Y; Wang YL; Xu WD; Yan YD; Zheng YH; Ma FQ; Li GQ
    Chemosphere; 2023 Aug; 331():138837. PubMed ID: 37146777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anodic behaviour of Cu, Zr and Cu-Zr alloy in molten LiCl-KCl eutectic.
    Cai Y; Chen X; Xu Q; Xu Y
    R Soc Open Sci; 2019 Jan; 6(1):181278. PubMed ID: 30800375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient reduction of antimony by sulfate-reducer enriched bio-cathode with hydrogen production in a microbial electrolysis cell.
    Arulmani SRB; Dai J; Li H; Chen Z; Zhang H; Yan J; Xiao T; Sun W
    Sci Total Environ; 2021 Jun; 774():145733. PubMed ID: 33609841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploration of metal sulfide syntheses and the dissolution process of antimony sulfide in phosphonium-based ionic liquids.
    Grasser MA; Pietsch T; Brunner E; Ruck M
    Dalton Trans; 2022 Mar; 51(10):4079-4086. PubMed ID: 35179150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behavior of aluminum electrodes in electrocoagulation process.
    Mouedhen G; Feki M; Wery Mde P; Ayedi HF
    J Hazard Mater; 2008 Jan; 150(1):124-35. PubMed ID: 17537574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chloride ion inhibition of electrochemical oscillations on the anode of an electrolytic manganese metal cell.
    Wu B; Liu M; Liu Z; Shu J; Fan X; Liu R; Xie Z; Tao C
    Environ Technol; 2021 Dec; 42(28):4444-4455. PubMed ID: 32436434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.
    Zhai LF; Song W; Tong ZH; Sun M
    J Hazard Mater; 2012 Dec; 243():350-6. PubMed ID: 23149300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent.
    Dutta PK; Rabaey K; Yuan Z; Rozendal RA; Keller J
    Water Res; 2010 Apr; 44(8):2563-71. PubMed ID: 20163816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling ZnTe, CdTe, and other compound semiconductors by ambipolar electrolysis.
    Bradwell DJ; Osswald S; Wei W; Barriga SA; Ceder G; Sadoway DR
    J Am Chem Soc; 2011 Dec; 133(49):19971-5. PubMed ID: 22035469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.
    Zheng D; Yang XQ; Qu D
    ChemSusChem; 2016 Sep; 9(17):2348-50. PubMed ID: 27535337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Desulfurization of Cu-Fe Alloy Obtained from Copper Slag and the Effect on Form of Copper in Alloy.
    Zhang B; Feng P; Zhang T
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous electrochemical removal of aqueous sulfide.
    Dutta PK; Rabaey K; Yuan Z; Keller J
    Water Res; 2008 Dec; 42(20):4965-75. PubMed ID: 18954888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrate removal by a paired electrolysis on copper and Ti/IrO(2) coupled electrodes - influence of the anode/cathode surface area ratio.
    Reyter D; Bélanger D; Roué L
    Water Res; 2010 Mar; 44(6):1918-26. PubMed ID: 20031186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].
    Li J; Zhang W; Yin F; Xu R; Chen Y
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.