These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35878478)

  • 1. Metal and PAH loads from ships and boats, relative other sources, in the Baltic Sea.
    Ytreberg E; Hansson K; Hermansson AL; Parsmo R; Lagerström M; Jalkanen JP; Hassellöv IM
    Mar Pollut Bull; 2022 Sep; 182():113904. PubMed ID: 35878478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea.
    Eklund B; Watermann B
    Environ Sci Pollut Res Int; 2018 May; 25(15):14595-14605. PubMed ID: 29532372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.
    Ytreberg E; Bighiu MA; Lundgren L; Eklund B
    Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring biofouling as a management tool for reducing toxic antifouling practices in the Baltic Sea.
    Wrange AL; Barboza FR; Ferreira J; Eriksson-Wiklund AK; Ytreberg E; Jonsson PR; Watermann B; Dahlström M
    J Environ Manage; 2020 Jun; 264():110447. PubMed ID: 32364954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flawed risk assessment of antifouling paints leads to exceedance of guideline values in Baltic Sea marinas.
    Lagerström M; Ferreira J; Ytreberg E; Eriksson-Wiklund AK
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27674-27687. PubMed ID: 32394257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofouling of leisure boats as a source of metal pollution.
    Bighiu MA; Eriksson-Wiklund AK; Eklund B
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):997-1006. PubMed ID: 27766522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can the input of biocides and polymeric substances from antifouling paints into the sea be reduced by the use of non-toxic hard coatings?
    Watermann B; Eklund B
    Mar Pollut Bull; 2019 Jul; 144():146-151. PubMed ID: 31179981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paint fragments as polluting microplastics: A brief review.
    Gaylarde CC; Neto JAB; da Fonseca EM
    Mar Pollut Bull; 2021 Jan; 162():111847. PubMed ID: 33338929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental risk assessment of using antifouling paints on pleasure crafts in European Union waters.
    Ytreberg E; Lagerström M; Nöu S; Wiklund AE
    J Environ Manage; 2021 Mar; 281():111846. PubMed ID: 33401119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifouling biocides in discarded marine paint particles.
    Parks R; Donnier-Marechal M; Frickers PE; Turner A; Readman JW
    Mar Pollut Bull; 2010 Aug; 60(8):1226-30. PubMed ID: 20381093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifouling paints leach copper in excess - study of metal release rates and efficacy along a salinity gradient.
    Lagerström M; Ytreberg E; Wiklund AE; Granhag L
    Water Res; 2020 Nov; 186():116383. PubMed ID: 32916622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.
    Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M
    Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling copper emissions from antifouling paints applied on leisure boats into German water bodies.
    Morling K; Fuchs S
    Environ Pollut; 2021 Nov; 289():117961. PubMed ID: 34426196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling spatial dispersion of contaminants from shipping lanes in the Baltic Sea.
    Maljutenko I; Hassellöv IM; Eriksson M; Ytreberg E; Yngsell D; Johansson L; Jalkanen JP; Kõuts M; Kasemets ML; Moldanova J; Magnusson K; Raudsepp U
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112985. PubMed ID: 34598094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of PAHs and heavy metals in coastal environments linked to leisure boats.
    Egardt J; Mørk Larsen M; Lassen P; Dahllöf I
    Mar Pollut Bull; 2018 Feb; 127():664-671. PubMed ID: 29475709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of antifouling biocides around a pleasure boat marina in the Baltic Sea after legal restrictions.
    Kylin H; Haglund K
    Bull Environ Contam Toxicol; 2010 Oct; 85(4):402-6. PubMed ID: 20690016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total tin and organotin speciation in historic layers of antifouling paint on leisure boat hulls.
    Lagerström M; Strand J; Eklund B; Ytreberg E
    Environ Pollut; 2017 Jan; 220(Pt B):1333-1341. PubMed ID: 27836476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impacts of grey water discharge from ships in the Baltic Sea.
    Ytreberg E; Eriksson M; Maljutenko I; Jalkanen JP; Johansson L; Hassellöv IM; Granhag L
    Mar Pollut Bull; 2020 Mar; 152():110891. PubMed ID: 32479276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New analytical application for metal determination in antifouling paints.
    Ytreberg E; Lundgren L; Bighiu MA; Eklund B
    Talanta; 2015 Oct; 143():121-126. PubMed ID: 26078138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.
    Lagerström M; Lindgren JF; Holmqvist A; Dahlström M; Ytreberg E
    Mar Pollut Bull; 2018 Feb; 127():289-296. PubMed ID: 29475665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.