BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35878485)

  • 1. KUB-UNet: Segmentation of Organs of Urinary System from a KUB X-ray Image.
    Rani G; Thakkar P; Verma A; Mehta V; Chavan R; Dhaka VS; Sharma RK; Vocaturo E; Zumpano E
    Comput Methods Programs Biomed; 2022 Sep; 224():107031. PubMed ID: 35878485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence.
    Ahmed F; Abbas S; Athar A; Shahzad T; Khan WA; Alharbi M; Khan MA; Ahmed A
    Sci Rep; 2024 Mar; 14(1):6173. PubMed ID: 38486010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the T11 vertebra to minimise the CT-KUB scan field.
    Uldin H; McGlynn E; Cleasby M
    Br J Radiol; 2020 Jun; 93(1110):20190771. PubMed ID: 32208971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Validation of a Deep Learning Model for Renal Stone Detection and Segmentation on Kidney-Ureter-Bladder Images.
    Huang ZH; Liu YY; Wu WJ; Huang KW
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Bacillus anthracis bacteria detection and segmentation in microscopic images using UNet+.
    Hoorali F; Khosravi H; Moradi B
    J Microbiol Methods; 2020 Oct; 177():106056. PubMed ID: 32931840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Model for Computer-Aided Diagnosis of Urolithiasis Detection from Kidney-Ureter-Bladder Images.
    Liu YY; Huang ZH; Huang KW
    Bioengineering (Basel); 2022 Dec; 9(12):. PubMed ID: 36551017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage.
    Yu N; Yu H; Li H; Ma N; Hu C; Wang J
    Stroke; 2022 Jan; 53(1):167-176. PubMed ID: 34601899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images.
    Zhang B; Qi S; Wu Y; Pan X; Yao Y; Qian W; Guan Y
    Comput Methods Programs Biomed; 2022 Jul; 222():106946. PubMed ID: 35716533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contour-aware multi-label chest X-ray organ segmentation.
    Kholiavchenko M; Sirazitdinov I; Kubrak K; Badrutdinova R; Kuleev R; Yuan Y; Vrtovec T; Ibragimov B
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):425-436. PubMed ID: 32034633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caries segmentation on tooth X-ray images with a deep network.
    Ying S; Wang B; Zhu H; Liu W; Huang F
    J Dent; 2022 Apr; 119():104076. PubMed ID: 35218876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ESA-UNet for assisted diagnosis of cardiac magnetic resonance image based on the semantic segmentation of the heart.
    Li Y; Liu Z; Lai Q; Li S; Guo Y; Wang Y; Dai Z; Huang J
    Front Cardiovasc Med; 2022; 9():1012450. PubMed ID: 36386384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images.
    Kushnure DT; Talbar SN
    Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate segmentation by sparse representation based classification.
    Gao Y; Liao S; Shen D
    Med Phys; 2012 Oct; 39(10):6372-87. PubMed ID: 23039673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternatives to the baseline KUB for CTKUB-detected calculi: evaluation of CT scout and average and maximum intensity projection images.
    Lew HM; Seow JH; Hewavitharana CP; Burrows S
    Abdom Radiol (NY); 2017 May; 42(5):1459-1463. PubMed ID: 27933480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COVID-DAI: A novel framework for COVID-19 detection and infection growth estimation using computed tomography images.
    Nazir T; Nawaz M; Javed A; Malik KM; Saudagar AKJ; Khan MB; Abul Hasanat MH; AlTameem A; AlKathami M
    Microsc Res Tech; 2022 Jun; 85(6):2313-2330. PubMed ID: 35194866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ULS4US: universal lesion segmentation framework for 2D ultrasound images.
    Wu X; Jiang Y; Xing H; Song W; Wu P; Cui XW; Xu G
    Phys Med Biol; 2023 Aug; 68(16):. PubMed ID: 37343585
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparison of kidney-ureter-bladder abdominal radiography and computed tomography scout films for identifying renal calculi.
    Johnston R; Lin A; Du J; Mark S
    BJU Int; 2009 Sep; 104(5):670-3. PubMed ID: 19694714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.