BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35878751)

  • 1. DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening.
    Zhang H; Zhang T; Saravanan KM; Liao L; Wu H; Zhang H; Zhang H; Pan Y; Wu X; Wei Y
    Methods; 2022 Sep; 205():247-262. PubMed ID: 35878751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Deep Learning-Based DFCNN in Extremely Large-Scale Virtual Screening and Application in Trypsin I Protease Inhibitor Discovery.
    Zhang H; Lin X; Wei Y; Zhang H; Liao L; Wu H; Pan Y; Wu X
    Front Mol Biosci; 2022; 9():872086. PubMed ID: 35720125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity.
    Zhang H; Liao L; Saravanan KM; Yin P; Wei Y
    PeerJ; 2019; 7():e7362. PubMed ID: 31380152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term.
    Zheng L; Meng J; Jiang K; Lan H; Wang Z; Lin M; Li W; Guo H; Wei Y; Mu Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation.
    Zhang H; Saravanan KM; Lin J; Liao L; Ng JT; Zhou J; Wei Y
    PeerJ; 2020; 8():e8864. PubMed ID: 32292649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
    Masters MR; Mahmoud AH; Wei Y; Lill MA
    J Chem Inf Model; 2023 Mar; 63(6):1695-1707. PubMed ID: 36916514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation.
    Wang Z; Pan H; Sun H; Kang Y; Liu H; Cao D; Hou T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EQUIBIND: A geometric deep learning-based protein-ligand binding prediction method.
    Li Y; Li L; Wang S; Tang X
    Drug Discov Ther; 2023 Nov; 17(5):363-364. PubMed ID: 37766553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
    Morrone JA; Weber JK; Huynh T; Luo H; Cornell WD
    J Chem Inf Model; 2020 Sep; 60(9):4170-4179. PubMed ID: 32077698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction.
    Zhang X; Gao H; Wang H; Chen Z; Zhang Z; Chen X; Li Y; Qi Y; Wang R
    J Chem Inf Model; 2024 Apr; 64(7):2205-2220. PubMed ID: 37319418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening.
    Chen L; Cruz A; Ramsey S; Dickson CJ; Duca JS; Hornak V; Koes DR; Kurtzman T
    PLoS One; 2019; 14(8):e0220113. PubMed ID: 31430292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.
    Chan WKB; Zhang Y
    J Mol Biol; 2020 Aug; 432(17):4872-4890. PubMed ID: 32652079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening.
    Zhang X; Shen C; Zhang H; Kang Y; Hsieh CY; Hou T
    Acc Chem Res; 2024 May; 57(10):1500-1509. PubMed ID: 38577892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Docking-Based Virtual Screening with Deep Learning.
    Pereira JC; Caffarena ER; Dos Santos CN
    J Chem Inf Model; 2016 Dec; 56(12):2495-2506. PubMed ID: 28024405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.