BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35878751)

  • 21. Towards Effective Consensus Scoring in Structure-Based Virtual Screening.
    Nhat Phuong D; Flower DR; Chattopadhyay S; Chattopadhyay AK
    Interdiscip Sci; 2023 Mar; 15(1):131-145. PubMed ID: 36550341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening.
    Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM
    J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer.
    Aziz M; Ejaz SA; Zargar S; Akhtar N; Aborode AT; A Wani T; Batiha GE; Siddique F; Alqarni M; Akintola AA
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual Screening with Gnina 1.0.
    Sunseri J; Koes DR
    Molecules; 2021 Dec; 26(23):. PubMed ID: 34885952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions.
    Kumar SP
    J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FRAGSITE2: A structure and fragment-based approach for virtual ligand screening.
    Zhou H; Skolnick J
    Protein Sci; 2024 Jan; 33(1):e4869. PubMed ID: 38100293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FINDSITE
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2018 Nov; 58(11):2343-2354. PubMed ID: 30278128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Small-Molecule Inhibitors of TIPE3 Protein Identified through Deep Learning Suppress Cancer Cell Growth In Vitro.
    Chen X; Lu Z; Xiao J; Xia W; Pan Y; Xia H; Chen YH; Zhang H
    Cells; 2024 Apr; 13(9):. PubMed ID: 38727307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. istar: a web platform for large-scale protein-ligand docking.
    Li H; Leung KS; Ballester PJ; Wong MH
    PLoS One; 2014; 9(1):e85678. PubMed ID: 24475049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. End-to-end learning for compound activity prediction based on binding pocket information.
    Tanebe T; Ishida T
    BMC Bioinformatics; 2021 Oct; 22(Suppl 3):529. PubMed ID: 34715777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques.
    Zhang H; Liao L; Cai Y; Hu Y; Wang H
    Methods; 2019 Aug; 166():57-65. PubMed ID: 30910562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DrugRep: an automatic virtual screening server for drug repurposing.
    Gan JH; Liu JX; Liu Y; Chen SW; Dai WT; Xiao ZX; Cao Y
    Acta Pharmacol Sin; 2023 Apr; 44(4):888-896. PubMed ID: 36216900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Scoring Neural Network Replacing the Scoring Function Components to Improve the Performance of Structure-Based Molecular Docking.
    Yang L; Yang G; Chen X; Yang Q; Yao X; Bing Z; Niu Y; Huang L; Yang L
    ACS Chem Neurosci; 2021 Jun; 12(12):2133-2142. PubMed ID: 34081851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient and accurate large library ligand docking with KarmaDock.
    Zhang X; Zhang O; Shen C; Qu W; Chen S; Cao H; Kang Y; Wang Z; Wang E; Zhang J; Deng Y; Liu F; Wang T; Du H; Wang L; Pan P; Chen G; Hsieh CY; Hou T
    Nat Comput Sci; 2023 Sep; 3(9):789-804. PubMed ID: 38177786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening.
    Hsieh JH; Yin S; Wang XS; Liu S; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2012 Jan; 52(1):16-28. PubMed ID: 22017385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep learning and docking simulation-based virtual screening strategy enables the rapid identification of HIF-1α pathway activators from a marine natural product database.
    A R N; G K R
    J Biomol Struct Dyn; 2024; 42(2):629-651. PubMed ID: 37038705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.