BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35878751)

  • 41. Electrostatic Energy in Protein-Ligand Complexes.
    Bitencourt-Ferreira G; Veit-Acosta M; de Azevedo WF
    Methods Mol Biol; 2019; 2053():67-77. PubMed ID: 31452099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.
    Bitencourt-Ferreira G; de Azevedo WF
    Biophys Chem; 2018 Sep; 240():63-69. PubMed ID: 29906639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AutoDock-SS: AutoDock for Multiconformational Ligand-Based Virtual Screening.
    Ni B; Wang H; Khalaf HKS; Blay V; Houston DR
    J Chem Inf Model; 2024 May; 64(9):3779-3789. PubMed ID: 38624083
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design.
    Lee HS; Im W
    J Comput Chem; 2019 Jun; 40(17):1622-1632. PubMed ID: 30829435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists.
    Kang KM; Lee I; Nam H; Kim YC
    Eur J Med Chem; 2022 Oct; 240():114556. PubMed ID: 35849939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. D3CARP: a comprehensive platform with multiple-conformation based docking, ligand similarity search and deep learning approaches for target prediction and virtual screening.
    Shi Y; Zhang X; Yang Y; Cai T; Peng C; Wu L; Zhou L; Han J; Ma M; Zhu W; Xu Z
    Comput Biol Med; 2023 Sep; 164():107283. PubMed ID: 37536095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FWAVina: A novel optimization algorithm for protein-ligand docking based on the fireworks algorithm.
    Li J; Song Y; Li F; Zhang H; Liu W
    Comput Biol Chem; 2020 Oct; 88():107363. PubMed ID: 32861160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations.
    Guterres H; Im W
    J Chem Inf Model; 2020 Apr; 60(4):2189-2198. PubMed ID: 32227880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generating property-matched decoy molecules using deep learning.
    Imrie F; Bradley AR; Deane CM
    Bioinformatics; 2021 Aug; 37(15):2134-2141. PubMed ID: 33532838
    [TBL] [Abstract][Full Text] [Related]  

  • 51. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity.
    Nguyen NT; Nguyen TH; Pham TNH; Huy NT; Bay MV; Pham MQ; Nam PC; Vu VV; Ngo ST
    J Chem Inf Model; 2020 Jan; 60(1):204-211. PubMed ID: 31887035
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors.
    Istyastono EP; Yuniarti N; Prasasty VD; Mungkasi S
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33922338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DSDP: A Blind Docking Strategy Accelerated by GPUs.
    Huang Y; Zhang H; Jiang S; Yue D; Lin X; Zhang J; Gao YQ
    J Chem Inf Model; 2023 Jul; 63(14):4355-4363. PubMed ID: 37386792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BioProtIS: Streamlining protein-ligand interaction pipeline for analysis in genomic and transcriptomic exploration.
    Virgens GS; Oliveira J; Cardoso MIO; Teodoro JA; Amaral DT
    J Mol Graph Model; 2024 May; 128():108721. PubMed ID: 38308972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina.
    Tanchuk VY; Tanin VO; Vovk AI; Poda G
    Chem Biol Drug Des; 2016 Apr; 87(4):618-25. PubMed ID: 26643167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.