These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 35878847)
1. Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.). Wang H; Lin S; Dai J; Ge Q Sci Total Environ; 2022 Nov; 846():157540. PubMed ID: 35878847 [TBL] [Abstract][Full Text] [Related]
2. Wood structural differences between northern and southern beech provenances growing at a moderate site. Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729 [TBL] [Abstract][Full Text] [Related]
3. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Fu YH; Piao S; Zhou X; Geng X; Hao F; Vitasse Y; Janssens IA Glob Chang Biol; 2019 May; 25(5):1696-1703. PubMed ID: 30779408 [TBL] [Abstract][Full Text] [Related]
4. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292 [TBL] [Abstract][Full Text] [Related]
5. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. Petrik P; Petek-Petrik A; Kurjak D; Mukarram M; Klein T; Gömöry D; Střelcová K; Frýdl J; Konôpková A Plant Biol (Stuttg); 2022 Dec; 24(7):1287-1296. PubMed ID: 35238138 [TBL] [Abstract][Full Text] [Related]
6. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Knutzen F; Meier IC; Leuschner C Tree Physiol; 2015 Sep; 35(9):949-63. PubMed ID: 26209617 [TBL] [Abstract][Full Text] [Related]
7. Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain. Rubio-Cuadrado Á; Camarero JJ; Rodríguez-Calcerrada J; Perea R; Gómez C; Montes F; Gil L Tree Physiol; 2021 Dec; 41(12):2279-2292. PubMed ID: 34046675 [TBL] [Abstract][Full Text] [Related]
8. Phenological plasticity will not help all species adapt to climate change. Duputié A; Rutschmann A; Ronce O; Chuine I Glob Chang Biol; 2015 Aug; 21(8):3062-73. PubMed ID: 25752508 [TBL] [Abstract][Full Text] [Related]
9. Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming. Meng L; Zhou Y; Gu L; Richardson AD; Peñuelas J; Fu Y; Wang Y; Asrar GR; De Boeck HJ; Mao J; Zhang Y; Wang Z Glob Chang Biol; 2021 Jun; 27(12):2914-2927. PubMed ID: 33651464 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring. Signarbieux C; Toledano E; Sanginés de Carcer P; Fu YH; Schlaepfer R; Buttler A; Vitasse Y Glob Chang Biol; 2017 Nov; 23(11):4569-4580. PubMed ID: 28464396 [TBL] [Abstract][Full Text] [Related]
11. Satellite data and machine learning reveal the incidence of late frost defoliations on Iberian beech forests. Olano JM; García-Cervigón AI; Sangüesa-Barreda G; Rozas V; Muñoz-Garachana D; García-Hidalgo M; García-Pedrero Á Ecol Appl; 2021 Apr; 31(3):e02288. PubMed ID: 33423382 [TBL] [Abstract][Full Text] [Related]
12. Risk of genetic maladaptation due to climate change in three major European tree species. Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600 [TBL] [Abstract][Full Text] [Related]
13. Warmer springs have increased the frequency and extension of late-frost defoliations in southern European beech forests. Sangüesa-Barreda G; Di Filippo A; Piovesan G; Rozas V; Di Fiore L; García-Hidalgo M; García-Cervigón AI; Muñoz-Garachana D; Baliva M; Olano JM Sci Total Environ; 2021 Jun; 775():145860. PubMed ID: 33631566 [TBL] [Abstract][Full Text] [Related]
14. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Fu YH; Piao S; Delpierre N; Hao F; Hänninen H; Liu Y; Sun W; Janssens IA; Campioli M Glob Chang Biol; 2018 May; 24(5):2159-2168. PubMed ID: 29245174 [TBL] [Abstract][Full Text] [Related]
15. Phenological response of European beech ( Skvareninova J; Sitko R; Vido J; Snopková Z; Skvarenina J Front Plant Sci; 2024; 15():1242695. PubMed ID: 38633456 [TBL] [Abstract][Full Text] [Related]
16. Winter warming offsets one half of the spring warming effects on leaf unfolding. Wang H; Dai J; Peñuelas J; Ge Q; Fu YH; Wu C Glob Chang Biol; 2022 Oct; 28(20):6033-6049. PubMed ID: 35899626 [TBL] [Abstract][Full Text] [Related]
17. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Fu YH; Piao S; Delpierre N; Hao F; Hänninen H; Geng X; Peñuelas J; Zhang X; Janssens IA; Campioli M Tree Physiol; 2019 Aug; 39(8):1277-1284. PubMed ID: 30989235 [TBL] [Abstract][Full Text] [Related]
18. Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. Dantec CF; Vitasse Y; Bonhomme M; Louvet JM; Kremer A; Delzon S Int J Biometeorol; 2014 Nov; 58(9):1853-64. PubMed ID: 24452386 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal variations in leaf-out phenology of typical European tree species and their responses to climate change. Lin SZ; Ge QS; Wang HJ Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):788-798. PubMed ID: 33754543 [TBL] [Abstract][Full Text] [Related]
20. Different Wood Anatomical and Growth Responses in European Beech ( Arnič D; Gričar J; Jevšenak J; Božič G; von Arx G; Prislan P Front Plant Sci; 2021; 12():669229. PubMed ID: 34381473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]