These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35878860)

  • 1. Biocathode prepared at low anodic potentials achieved a higher response for water biotoxicity monitoring after polarity reversal.
    Chu N; Jiang Y; Zhang L; Zeng RJ; Li D
    Sci Total Environ; 2022 Nov; 847():157553. PubMed ID: 35878860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-microbial electrochemical sensor equipped with combined bioanode and biocathode for water biotoxicity monitoring.
    Chu N; Liang Q; Hao W; Jiang Y; Zeng RJ
    Bioresour Technol; 2021 Apr; 326():124743. PubMed ID: 33503515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel microbial fuel cell sensor with biocathode sensing element.
    Jiang Y; Liang P; Liu P; Wang D; Miao B; Huang X
    Biosens Bioelectron; 2017 Aug; 94():344-350. PubMed ID: 28319901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.
    Jiang Y; Liang P; Huang X; Ren ZJ
    Chemosphere; 2018 Jul; 203():21-25. PubMed ID: 29604426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid warning of emerging contaminants in reuse water using biocathode sensors.
    Han Y; Li H; Liao C; Zhu X; Wang Z; Yan J; Wang X
    J Hazard Mater; 2023 Sep; 457():131735. PubMed ID: 37269559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring.
    Zhao T; Xie B; Yi Y; Liu H
    Bioresour Technol; 2019 Mar; 276():276-280. PubMed ID: 30640022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal set of electrode potential enhances the toxicity response of biocathode to formaldehyde.
    Liao C; Wu J; Zhou L; Li T; Du Q; An J; Li N; Wang X
    Sci Total Environ; 2018 Dec; 644():1485-1492. PubMed ID: 30743861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water.
    Lin Z; Cheng S; Li H; Li L
    Sci Total Environ; 2022 Feb; 806(Pt 4):150945. PubMed ID: 34655619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production with a microbial biocathode.
    Rozendal RA; Jeremiasse AW; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2008 Jan; 42(2):629-34. PubMed ID: 18284174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell.
    Xu L; Yu W; Graham N; Zhao Y
    Chemosphere; 2021 Feb; 264(Pt 1):128532. PubMed ID: 33038753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors.
    Chu N; Cai J; Li Z; Gao Y; Liang Q; Hao W; Liu P; Jiang Y; Zeng RJ
    Chemosphere; 2022 Jan; 286(Pt 2):131725. PubMed ID: 34352539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.
    Yi Y; Xie B; Zhao T; Liu H
    Bioresour Technol; 2018 Oct; 265():415-421. PubMed ID: 29933189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence and implications of voltage reversal in stacked microbial fuel cells.
    An J; Lee HS
    ChemSusChem; 2014 Jun; 7(6):1689-95. PubMed ID: 24771553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application.
    Jiang Y; Zeng RJ
    Bioresour Technol; 2019 Jan; 271():439-448. PubMed ID: 30292689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water.
    Prévoteau A; Clauwaert P; Kerckhof FM; Rabaey K
    Biosens Bioelectron; 2019 May; 132():115-121. PubMed ID: 30856427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectrochemical perchlorate reduction in a microbial fuel cell.
    Butler CS; Clauwaert P; Green SJ; Verstraete W; Nerenberg R
    Environ Sci Technol; 2010 Jun; 44(12):4685-91. PubMed ID: 20476736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid, Optimized and Enhanced Approach.
    Rewatkar P; Goel S
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):4-10. PubMed ID: 31536011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications.
    Sanad MF; Chava VSN; Shalan AE; Enriquez LG; Zheng T; Pilla S; Sreenivasan ST
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40731-40741. PubMed ID: 34424665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.