These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35878995)
1. The breeder's tool-box for enhancing the content of esterified carotenoids in wheat: From extraction and profiling of carotenoids to marker-assisted selection of candidate genes. Rodríguez-Suárez C; Requena-Ramírez MD; Hornero-Méndez D; Atienza SG Methods Enzymol; 2022; 671():99-125. PubMed ID: 35878995 [TBL] [Abstract][Full Text] [Related]
2. Mediation of a GDSL Esterase/Lipase in Carotenoid Esterification in Tritordeum Suggests a Common Mechanism of Carotenoid Esterification in Triticeae Species. Requena-Ramírez MD; Atienza SG; Hornero-Méndez D; Rodríguez-Suárez C Front Plant Sci; 2020; 11():592515. PubMed ID: 33746990 [TBL] [Abstract][Full Text] [Related]
3. Carotenoid evolution during short-storage period of durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) whole-grain flours. Mellado-Ortega E; Hornero-Méndez D Food Chem; 2016 Feb; 192():714-23. PubMed ID: 26304402 [TBL] [Abstract][Full Text] [Related]
4. Towards carotenoid biofortification in wheat: identification of XAT-7A1, a multicopy tandem gene responsible for carotenoid esterification in durum wheat. Rodríguez-Suárez C; Requena-Ramírez MD; Hornero-Méndez D; Atienza SG BMC Plant Biol; 2023 Sep; 23(1):412. PubMed ID: 37674126 [TBL] [Abstract][Full Text] [Related]
5. Effect of long-term storage on the free and esterified carotenoids in durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) grains. Mellado-Ortega E; Hornero-Méndez D Food Res Int; 2017 Sep; 99(Pt 2):877-890. PubMed ID: 28847425 [TBL] [Abstract][Full Text] [Related]
6. Carotenoid content in tritordeum is not primarily associated with esterification during grain development. Mattera MG; Hornero-Méndez D; Atienza SG Food Chem; 2020 Apr; 310():125847. PubMed ID: 31732244 [TBL] [Abstract][Full Text] [Related]
8. Lutein ester profile in wheat and tritordeum can be modulated by temperature: Evidences for regioselectivity and fatty acid preferential of enzymes encoded by genes on chromosomes 7D and 7H Mattera MG; Hornero-Méndez D; Atienza SG Food Chem; 2017 Mar; 219():199-206. PubMed ID: 27765217 [TBL] [Abstract][Full Text] [Related]
9. Lutein esterification increases carotenoid retention in durum wheat grain. A step further in breeding and improving the commercial and nutritional quality during grain storage. Requena-Ramírez MD; Rodríguez-Suárez C; Hornero-Méndez D; Atienza SG Food Chem; 2024 Mar; 435():137660. PubMed ID: 37832338 [TBL] [Abstract][Full Text] [Related]
10. Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Rodríguez-Suárez C; Mellado-Ortega E; Hornero-Méndez D; Atienza SG Plant Mol Biol; 2014 Apr; 84(6):659-73. PubMed ID: 24306494 [TBL] [Abstract][Full Text] [Related]
11. A GDSL Esterase/Lipase Catalyzes the Esterification of Lutein in Bread Wheat. Watkins JL; Li M; McQuinn RP; Chan KX; McFarlane HE; Ermakova M; Furbank RT; Mares D; Dong C; Chalmers KJ; Sharp P; Mather DE; Pogson BJ Plant Cell; 2019 Dec; 31(12):3092-3112. PubMed ID: 31575724 [TBL] [Abstract][Full Text] [Related]
12. Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures. Mellado-Ortega E; Hornero-Méndez D Foods; 2017 Dec; 6(12):. PubMed ID: 29232927 [TBL] [Abstract][Full Text] [Related]
13. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Paznocht L; Kotíková Z; Šulc M; Lachman J; Orsák M; Eliášová M; Martinek P Food Chem; 2018 Feb; 240():670-678. PubMed ID: 28946328 [TBL] [Abstract][Full Text] [Related]
14. Genetic variability of carotenoid concentration and degree of esterification among tritordeum (xTritordeum Ascherson et Graebner) and durum wheat accessions. Atienza SG; Ballesteros J; Martín A; Hornero-Méndez D J Agric Food Chem; 2007 May; 55(10):4244-51. PubMed ID: 17439153 [TBL] [Abstract][Full Text] [Related]
15. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Fernandez-Orozco R; Gallardo-Guerrero L; Hornero-Méndez D Food Chem; 2013 Dec; 141(3):2864-72. PubMed ID: 23871035 [TBL] [Abstract][Full Text] [Related]
16. Mutant combinations of lycopene ɛ-cyclase and β-carotene hydroxylase 2 homoeologs increased β-carotene accumulation in endosperm of tetraploid wheat (Triticum turgidum L.) grains. Yu S; Li M; Dubcovsky J; Tian L Plant Biotechnol J; 2022 Mar; 20(3):564-576. PubMed ID: 34695292 [TBL] [Abstract][Full Text] [Related]
17. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Ndolo VU; Beta T Food Chem; 2013 Aug; 139(1-4):663-71. PubMed ID: 23561159 [TBL] [Abstract][Full Text] [Related]
18. Characterization of grain carotenoids in global sorghum germplasm to guide genomics-assisted breeding strategies. Cruet-Burgos C; Morris GP; Rhodes DH BMC Plant Biol; 2023 Mar; 23(1):165. PubMed ID: 36977987 [TBL] [Abstract][Full Text] [Related]
19. Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach. Garcia Molina MD; Botticella E; Beleggia R; Palombieri S; De Vita P; Masci S; Lafiandra D; Sestili F Theor Appl Genet; 2021 Dec; 134(12):4013-4024. PubMed ID: 34477900 [TBL] [Abstract][Full Text] [Related]
20. Carotenoid content of extruded and puffed products made of colored-grain wheats. Paznocht L; Burešová B; Kotíková Z; Martinek P Food Chem; 2021 Mar; 340():127951. PubMed ID: 32896777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]