BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35879669)

  • 1. SparkGC: Spark based genome compression for large collections of genomes.
    Yao H; Hu G; Liu S; Fang H; Ji Y
    BMC Bioinformatics; 2022 Jul; 23(1):297. PubMed ID: 35879669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed and high-ratio referential genome compression.
    Liu Y; Peng H; Wong L; Li J
    Bioinformatics; 2017 Nov; 33(21):3364-3372. PubMed ID: 28651329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SparkGA2: Production-quality memory-efficient Apache Spark based genome analysis framework.
    Mushtaq H; Ahmed N; Al-Ars Z
    PLoS One; 2019; 14(12):e0224784. PubMed ID: 31805063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new efficient referential genome compression technique for FastQ files.
    Kumar S; Singh MP; Nayak SR; Khan AU; Jain AK; Singh P; Diwakar M; Soujanya T
    Funct Integr Genomics; 2023 Nov; 23(4):333. PubMed ID: 37950100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PQSDC: a parallel lossless compressor for quality scores data via sequences partition and run-length prediction mapping.
    Sun H; Zheng Y; Xie H; Ma H; Zhong C; Yan M; Liu X; Wang G
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38759114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed hybrid-indexing of compressed pan-genomes for scalable and fast sequence alignment.
    Maarala AI; Arasalo O; Valenzuela D; Mäkinen V; Heljanko K
    PLoS One; 2021; 16(8):e0255260. PubMed ID: 34343181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VC@Scale: Scalable and high-performance variant calling on cluster environments.
    Ahmad T; Al Ars Z; Hofstee HP
    Gigascience; 2021 Sep; 10(9):. PubMed ID: 34494101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sketch distance-based clustering of chromosomes for large genome database compression.
    Tang T; Liu Y; Zhang B; Su B; Li J
    BMC Genomics; 2019 Dec; 20(Suppl 10):978. PubMed ID: 31888458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADS-HCSpark: A scalable HaplotypeCaller leveraging adaptive data segmentation to accelerate variant calling on Spark.
    Xiao A; Wu Z; Dong S
    BMC Bioinformatics; 2019 Feb; 20(1):76. PubMed ID: 30764760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GVC: efficient random access compression for gene sequence variations.
    Adhisantoso YG; Voges J; Rohlfing C; Tunev V; Ohm JR; Ostermann J
    BMC Bioinformatics; 2023 Mar; 24(1):121. PubMed ID: 36978010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference-based genome compression using the longest matched substrings with parallelization consideration.
    Lu Z; Guo L; Chen J; Wang R
    BMC Bioinformatics; 2023 Sep; 24(1):369. PubMed ID: 37777730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERGC: an efficient referential genome compression algorithm.
    Saha S; Rajasekaran S
    Bioinformatics; 2015 Nov; 31(21):3468-75. PubMed ID: 26139636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CoGI: Towards Compressing Genomes as an Image.
    Xie X; Zhou S; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1275-85. PubMed ID: 26671800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale microbiome profiling in the cloud.
    Valdes C; Stebliankin V; Narasimhan G
    Bioinformatics; 2019 Jul; 35(14):i13-i22. PubMed ID: 31510682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression of genomic sequencing reads via hash-based reordering: algorithm and analysis.
    Chandak S; Tatwawadi K; Weissman T
    Bioinformatics; 2018 Feb; 34(4):558-567. PubMed ID: 29444237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AFRESh: an adaptive framework for compression of reads and assembled sequences with random access functionality.
    Paridaens T; Van Wallendael G; De Neve W; Lambert P
    Bioinformatics; 2017 May; 33(10):1464-1472. PubMed ID: 28057687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GDC 2: Compression of large collections of genomes.
    Deorowicz S; Danek A; Niemiec M
    Sci Rep; 2015 Jun; 5():11565. PubMed ID: 26108279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allowing mutations in maximal matches boosts genome compression performance.
    Liu Y; Wong L; Li J
    Bioinformatics; 2020 Sep; 36(18):4675-4681. PubMed ID: 33118018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDoComp: a compression scheme for assembled genomes.
    Ochoa I; Hernaez M; Weissman T
    Bioinformatics; 2015 Mar; 31(5):626-33. PubMed ID: 25344501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome compression: a novel approach for large collections.
    Deorowicz S; Danek A; Grabowski S
    Bioinformatics; 2013 Oct; 29(20):2572-8. PubMed ID: 23969136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.