These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35880018)

  • 1. Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment.
    Kuznetsov IA; Berlew EE; Glantz ST; Hannanta-Anan P; Chow BY
    Cell Rep Methods; 2022 Jul; 2(7):100245. PubMed ID: 35880018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Control of Fibroblast Growth Factor Receptor Signaling.
    Kim N; Kim JM; Heo WD
    Methods Mol Biol; 2016; 1408():345-62. PubMed ID: 26965135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically inducible membrane recruitment and signaling systems.
    Hannanta-Anan P; Glantz ST; Chow BY
    Curr Opin Struct Biol; 2019 Aug; 57():84-92. PubMed ID: 30884362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-responsive optogenetic probes of cell signaling.
    Benman W; Berlew EE; Deng H; Parker C; Kuznetsov IA; Lim B; Siekmann AF; Chow BY; Bugaj LJ
    Nat Chem Biol; 2022 Feb; 18(2):152-160. PubMed ID: 34937907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor.
    Pal AA; Benman W; Mumford TR; Huang Z; Chow BY; Bugaj LJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2221615120. PubMed ID: 37527339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Single-Component Optogenetic Membrane Recruitment Systems: The Rho-Family GTPase Signaling Toolbox.
    Berlew EE; Yamada K; Kuznetsov IA; Rand EA; Ochs CC; Jaber Z; Gardner KH; Chow BY
    ACS Synth Biol; 2022 Jan; 11(1):515-521. PubMed ID: 34978789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment.
    Natwick DE; Collins SR
    ACS Synth Biol; 2021 May; 10(5):1009-1023. PubMed ID: 33843200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Subcellular Protein Recruitment Dynamics for Synthetic Biology.
    Badu-Nkansah KA; Sernas D; Natwick DE; Collins SR
    Methods Mol Biol; 2023; 2553():189-207. PubMed ID: 36227545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic cell-like membrane interfaces for probing dynamic protein-lipid interactions.
    Glantz ST; Berlew EE; Chow BY
    Methods Enzymol; 2019; 622():249-270. PubMed ID: 31155055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic manipulation of cell migration with high spatiotemporal resolution using lattice lightsheet microscopy.
    Tang WC; Liu YT; Yeh CH; Lu CH; Tu CH; Lin YL; Lin YC; Hsu TL; Gao L; Chang SW; Chen P; Chen BC
    Commun Biol; 2022 Aug; 5(1):879. PubMed ID: 36028551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane Dynamics Induced by a Phosphatidylinositol 3,4,5-Trisphosphate Optogenetic Tool.
    Ueda Y; Ii T; Aono Y; Sugimoto N; Shinji S; Yoshida H; Sato M
    Anal Sci; 2019 Jan; 35(1):57-63. PubMed ID: 30393242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.
    Bugaj LJ; Spelke DP; Mesuda CK; Varedi M; Kane RS; Schaffer DV
    Nat Commun; 2015 Apr; 6():6898. PubMed ID: 25902152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling.
    Berlew EE; Kuznetsov IA; Yamada K; Bugaj LJ; Boerckel JD; Chow BY
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100810. PubMed ID: 34288599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy.
    Lovy A; Molina AJ; Cerqueira FM; Trudeau K; Shirihai OS
    J Vis Exp; 2012 Jul; (65):e3991. PubMed ID: 22847388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidirectional Activity Control of Cellular Processes by a Versatile Chemo-optogenetic Approach.
    Chen X; Venkatachalapathy M; Dehmelt L; Wu YW
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11993-11997. PubMed ID: 30048030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetics - Bringing light into the darkness of mammalian signal transduction.
    Mühlhäuser WW; Fischer A; Weber W; Radziwill G
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):280-292. PubMed ID: 27845208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.
    Cavanaugh KE; Oakes PW; Gardel ML
    Curr Protoc Cell Biol; 2020 Mar; 86(1):e102. PubMed ID: 32031760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Illuminating information transfer in signaling dynamics by optogenetics.
    Isomura A; Kageyama R
    Curr Opin Cell Biol; 2017 Dec; 49():9-15. PubMed ID: 29175322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and Manipulation of Intracellular Signaling.
    Goto Y; Kondo Y; Aoki K
    Adv Exp Med Biol; 2021; 1293():225-234. PubMed ID: 33398816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.