These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35880038)
1. Flood vulnerability of a few areas in the foothills of the Western Ghats: a comparison of AHP and F-AHP models. Senan CPC; Ajin RS; Danumah JH; Costache R; Arabameri A; Rajaneesh A; Sajinkumar KS; Kuriakose SL Stoch Environ Res Risk Assess; 2023; 37(2):527-556. PubMed ID: 35880038 [TBL] [Abstract][Full Text] [Related]
2. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Pathan AI; Girish Agnihotri P; Said S; Patel D Environ Monit Assess; 2022 Jun; 194(7):509. PubMed ID: 35713716 [TBL] [Abstract][Full Text] [Related]
3. Dengue risk zone mapping of Thiruvananthapuram district, India: a comparison of the AHP and F-AHP methods. Harsha G; Anish TS; Rajaneesh A; Prasad MK; Mathew R; Mammen PC; Ajin RS; Kuriakose SL GeoJournal; 2023; 88(3):2449-2470. PubMed ID: 36157197 [TBL] [Abstract][Full Text] [Related]
4. Spatial assessment of flood vulnerability and waterlogging extent in agricultural lands using RS-GIS and AHP technique-a case study of Patan district Gujarat, India. Gahalod NSS; Rajeev K; Pant PK; Binjola S; Yadav RL; Meena RL Environ Monit Assess; 2024 Mar; 196(4):338. PubMed ID: 38430346 [TBL] [Abstract][Full Text] [Related]
5. Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Penki R; Basina SS; Tanniru SR Environ Sci Pollut Res Int; 2023 Sep; 30(44):99062-99075. PubMed ID: 36087179 [TBL] [Abstract][Full Text] [Related]
6. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
7. Ensemble of fuzzy-analytical hierarchy process in landslide susceptibility modeling from a humid tropical region of Western Ghats, Southern India. Gopinath G; Jesiya N; Achu AL; Bhadran A; Surendran UP Environ Sci Pollut Res Int; 2024 Jun; 31(29):41370-41387. PubMed ID: 37156952 [TBL] [Abstract][Full Text] [Related]
8. Mapping flood vulnerability using an analytical hierarchy process (AHP) in the Metropolis of Mumbai. Mann R; Gupta A Environ Monit Assess; 2023 Nov; 195(12):1534. PubMed ID: 38008879 [TBL] [Abstract][Full Text] [Related]
9. A geospatial analysis of flood risk zones in Cyprus: insights from statistical and multi-criteria decision analysis methods. Ghanem MAAN; Zaifoglu H Environ Sci Pollut Res Int; 2024 May; 31(22):32875-32900. PubMed ID: 38671266 [TBL] [Abstract][Full Text] [Related]
10. Flood vulnerability assessment in the Jamuna river floodplain using multi-criteria decision analysis: A case study in Jamalpur district, Bangladesh. Nahin KTK; Islam SB; Mahmud S; Hossain I Heliyon; 2023 Mar; 9(3):e14520. PubMed ID: 37020948 [TBL] [Abstract][Full Text] [Related]
11. A GIS based flood vulnerability modelling of Anambra State using an integrated IVFRN-DEMATEL-ANP model. Chukwuma EC; Okonkwo CC; Ojediran JO; Anizoba DC; Ubah JI; Nwachukwu CP Heliyon; 2021 Sep; 7(9):e08048. PubMed ID: 34622057 [TBL] [Abstract][Full Text] [Related]
12. Coastal Flood risk assessment using ensemble multi-criteria decision-making with machine learning approaches. Asiri MM; Aldehim G; Alruwais N; Allafi R; Alzahrani I; Nouri AM; Assiri M; Ahmed NA Environ Res; 2024 Mar; 245():118042. PubMed ID: 38160971 [TBL] [Abstract][Full Text] [Related]
13. Flood risk assessment of Wuhan, China, using a multi-criteria analysis model with the improved AHP-Entropy method. Chen Y; Wang D; Zhang L; Guo H; Ma J; Gao W Environ Sci Pollut Res Int; 2023 Sep; 30(42):96001-96018. PubMed ID: 37561303 [TBL] [Abstract][Full Text] [Related]
14. Mapping flood susceptibility with PROMETHEE multi-criteria analysis method. Plataridis K; Mallios Z Environ Sci Pollut Res Int; 2024 Jun; 31(28):41267-41289. PubMed ID: 38847951 [TBL] [Abstract][Full Text] [Related]
15. A geospatial approach for assessing urban flood risk zones in Chennai, Tamil Nadu, India. Bagyaraj M; Senapathi V; Chung SY; Gopalakrishnan G; Xiao Y; Karthikeyan S; Nadiri AA; Barzegar R Environ Sci Pollut Res Int; 2023 Sep; 30(45):100562-100575. PubMed ID: 37639084 [TBL] [Abstract][Full Text] [Related]
16. Land degradation vulnerability mapping in a west coast river basin of India using analytical hierarchy process combined machine learning models. Das B; Desai S; Daripa A; Anand GC; Kumar U; Khalkho D; Thangavel V; Kumar N; Obi Reddy GP; Kumar P Environ Sci Pollut Res Int; 2023 Jul; 30(35):83975-83990. PubMed ID: 37353699 [TBL] [Abstract][Full Text] [Related]
17. Flood Hazard Zoning of Upper Awash River Basin, Ethiopia, Using the Analytical Hierarchy Process (AHP) as Compared to Sensitivity Analysis. Mekonnen TM; Mitiku AB; Woldemichael AT ScientificWorldJournal; 2023; 2023():1675634. PubMed ID: 37077513 [TBL] [Abstract][Full Text] [Related]
18. Assessment of vulnerability to flood risk in the Padma River Basin using hydro-morphometric modeling and flood susceptibility mapping. Abrar MF; Iman YE; Mustak MB; Pal SK Environ Monit Assess; 2024 Jun; 196(7):661. PubMed ID: 38918209 [TBL] [Abstract][Full Text] [Related]
19. Flood risk mapping and analysis using an integrated framework of machine learning models and analytic hierarchy process. Bui QD; Luu C; Mai SH; Ha HT; Ta HT; Pham BT Risk Anal; 2023 Jul; 43(7):1478-1495. PubMed ID: 36088657 [TBL] [Abstract][Full Text] [Related]
20. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Lyu HM; Sun WJ; Shen SL; Arulrajah A Sci Total Environ; 2018 Jun; 626():1012-1025. PubMed ID: 29898510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]