BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35880071)

  • 1. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.
    Berghuis AM; Tichauer RH; de Jong LMA; Sokolovskii I; Bai P; Ramezani M; Murai S; Groenhof G; Gómez Rivas J
    ACS Photonics; 2022 Jul; 9(7):2263-2272. PubMed ID: 35880071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation.
    Hou S; Khatoniar M; Ding K; Qu Y; Napolov A; Menon VM; Forrest SR
    Adv Mater; 2020 Jul; 32(28):e2002127. PubMed ID: 32484288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor.
    Tichauer RH; Sokolovskii I; Groenhof G
    Adv Sci (Weinh); 2023 Nov; 10(33):e2302650. PubMed ID: 37818758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors.
    Pandya R; Chen RYS; Gu Q; Sung J; Schnedermann C; Ojambati OS; Chikkaraddy R; Gorman J; Jacucci G; Onelli OD; Willhammar T; Johnstone DN; Collins SM; Midgley PA; Auras F; Baikie T; Jayaprakash R; Mathevet F; Soucek R; Du M; Alvertis AM; Ashoka A; Vignolini S; Lidzey DG; Baumberg JJ; Friend RH; Barisien T; Legrand L; Chin AW; Yuen-Zhou J; Saikin SK; Kukura P; Musser AJ; Rao A
    Nat Commun; 2021 Nov; 12(1):6519. PubMed ID: 34764252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-confined Propagating Exciton-Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs.
    Wang Y; Luo A; Zhu C; Li Z; Wu X
    Nanoscale Res Lett; 2022 Nov; 17(1):109. PubMed ID: 36399213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities.
    Polak D; Jayaprakash R; Lyons TP; Martínez-Martínez LÁ; Leventis A; Fallon KJ; Coulthard H; Bossanyi DG; Georgiou K; Petty Ii AJ; Anthony J; Bronstein H; Yuen-Zhou J; Tartakovskii AI; Clark J; Musser AJ
    Chem Sci; 2020 Jan; 11(2):343-354. PubMed ID: 32190258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Dynamics of Nonequilibrium Organic Exciton-Polariton Condensates.
    Ramezani M; Halpin A; Wang S; Berghuis M; Rivas JG
    Nano Lett; 2019 Dec; 19(12):8590-8596. PubMed ID: 31670967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling.
    Sokolovskii I; Tichauer RH; Morozov D; Feist J; Groenhof G
    Nat Commun; 2023 Oct; 14(1):6613. PubMed ID: 37857599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Coherent Propagation of Organic Exciton-Polaritons through Dark State Delocalization.
    Pandya R; Ashoka A; Georgiou K; Sung J; Jayaprakash R; Renken S; Gai L; Shen Z; Rao A; Musser AJ
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105569. PubMed ID: 35474309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Bosonic Condensation of Exciton Polaritons in an H-Aggregate Organic Single-Crystal Microcavity.
    Ren J; Liao Q; Huang H; Li Y; Gao T; Ma X; Schumacher S; Yao J; Bai S; Fu H
    Nano Lett; 2020 Oct; 20(10):7550-7557. PubMed ID: 32986448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Hermitian molecular dynamics simulations of exciton-polaritons in lossy cavities.
    Sokolovskii I; Groenhof G
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear Emission of Molecular Ensembles Strongly Coupled to Plasmonic Lattices with Structural Imperfections.
    Ramezani M; Le-Van Q; Halpin A; Gómez Rivas J
    Phys Rev Lett; 2018 Dec; 121(24):243904. PubMed ID: 30608720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polariton Dynamics in Two-Dimensional Ruddlesden-Popper Perovskites Strongly Coupled with Plasmonic Lattices.
    Park JE; López-Arteaga R; Sample AD; Cherqui CR; Spanopoulos I; Guan J; Kanatzidis MG; Schatz GC; Weiss EA; Odom TW
    ACS Nano; 2022 Mar; 16(3):3917-3925. PubMed ID: 35235746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Optical Absorption and Slowed Light of Reduced-Dimensional CsPbBr
    Shang Q; Li C; Zhang S; Liang Y; Liu Z; Liu X; Zhang Q
    Nano Lett; 2020 Feb; 20(2):1023-1032. PubMed ID: 31917588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities.
    Keeling J; Kéna-Cohen S
    Annu Rev Phys Chem; 2020 Apr; 71():435-459. PubMed ID: 32126177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal Dynamics of Localized Exciton-Polaritons in Composite Organic-Plasmonic Metasurfaces.
    Eizner E; Akulov K; Schwartz T; Ellenbogen T
    Nano Lett; 2017 Dec; 17(12):7675-7683. PubMed ID: 29078048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy of singlet exciton diffusion in organic semiconductor crystals from ab initio approaches.
    Stehr V; Engels B; Deibel C; Fink RF
    J Chem Phys; 2014 Jan; 140(2):024503. PubMed ID: 24437892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polariton-assisted excitation energy channeling in organic heterojunctions.
    Wang M; Hertzog M; Börjesson K
    Nat Commun; 2021 Mar; 12(1):1874. PubMed ID: 33767204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.