These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35880578)

  • 1. Synthesis of Cage-Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation.
    Tsutsui Y; Tanaka D; Manabe Y; Ikinaga Y; Yano K; Fukase K; Konishi A; Yasuda M
    Chemistry; 2022 Nov; 28(62):e202202284. PubMed ID: 35880578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of aromatic compounds by π pocket within a cage-shaped borate catalyst.
    Nakajima H; Yasuda M; Takeda R; Baba A
    Angew Chem Int Ed Engl; 2012 Apr; 51(16):3867-70. PubMed ID: 22411840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cage-shaped borate esters with tris(2-oxyphenyl)methane or -silane system frameworks bearing multiple tuning factors: geometric and substituent effects on their Lewis acid properties.
    Yasuda M; Nakajima H; Takeda R; Yoshioka S; Yamasaki S; Chiba K; Baba A
    Chemistry; 2011 Mar; 17(14):3856-67. PubMed ID: 21384446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Activation of Aromatic Aldehydes Promoted by Dispersion Interactions: Steric and Electronic Factors of a π-Pocket within Cage-Shaped Borates for Molecular Recognition.
    Tanaka D; Tsutsui Y; Konishi A; Nakaoka K; Nakajima H; Baba A; Chiba K; Yasuda M
    Chemistry; 2020 Nov; 26(65):15023-15034. PubMed ID: 32870540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Cage-Shaped Aluminum Aryloxides: Efficient Lewis Acid Catalyst for Stereoselective Glycosylation Driven by Flexible Shift of Four- to Five-Coordination.
    Tanaka D; Kadonaga Y; Manabe Y; Fukase K; Sasaya S; Maruyama H; Nishimura S; Yanagihara M; Konishi A; Yasuda M
    J Am Chem Soc; 2019 Nov; 141(44):17466-17471. PubMed ID: 31573807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protecting-Group-Free Amidation of Amino Acids using Lewis Acid Catalysts.
    Sabatini MT; Karaluka V; Lanigan RM; Boulton LT; Badland M; Sheppard TD
    Chemistry; 2018 May; 24(27):7033-7043. PubMed ID: 29505683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Lewis Acidity by a Transannular p
    Konishi A; Nakaoka K; Nakajima H; Chiba K; Baba A; Yasuda M
    Chemistry; 2017 Apr; 23(22):5219-5223. PubMed ID: 28252224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cage-shaped borate esters with enhanced Lewis acidity and catalytic activity.
    Yasuda M; Yoshioka S; Yamasaki S; Somyo T; Chiba K; Baba A
    Org Lett; 2006 Feb; 8(4):761-4. PubMed ID: 16468761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors.
    Gould ND; Liana Allen C; Nam BC; Schepartz A; Miller SJ
    Carbohydr Res; 2013 Dec; 382():36-42. PubMed ID: 24177201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C
    Konishi A; Nakaoka K; Maruyama H; Nakajima H; Eguchi T; Baba A; Yasuda M
    Chemistry; 2017 Jan; 23(6):1273-1277. PubMed ID: 27933675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective synthesis of 2-C-branched (acetylmethyl) oligosaccharides and glycoconjugates: Lewis acid-catalyzed glycosylation from 1,2-cyclopropaneacetylated sugars.
    Tian Q; Dong L; Ma X; Xu L; Hu C; Zou W; Shao H
    J Org Chem; 2011 Feb; 76(4):1045-53. PubMed ID: 21247172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-yielding synthesis of allyl glycosides from peracetylated glycosyl donors.
    Khamsi J; Ashmus RA; Schocker NS; Michael K
    Carbohydr Res; 2012 Aug; 357():147-50. PubMed ID: 22677518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lewis acids as α-directing additives in glycosylations by using 2,3-O-carbonate-protected glucose and galactose thioglycoside donors based on preactivation protocol.
    Geng Y; Qin Q; Ye XS
    J Org Chem; 2012 Jun; 77(12):5255-70. PubMed ID: 22607015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of atom-economical catalytic asymmetric reactions under proton transfer conditions: construction of tetrasubstituted stereogenic centers and their application to therapeutics.
    Kumagai N
    Chem Pharm Bull (Tokyo); 2011; 59(1):1-22. PubMed ID: 21212541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and properties of a benzofuran-based cage-shaped borate: photo activation of Lewis acid catalysts.
    Konishi A; Yasunaga R; Chiba K; Yasuda M
    Chem Commun (Camb); 2016 Feb; 52(16):3348-51. PubMed ID: 26823084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A protocol for metal triflate catalyzed direct glycosylations with GalNAc 1-OPiv donors.
    Rasmussen MR; Marqvorsen MH; Kristensen SK; Jensen HH
    J Org Chem; 2014 Nov; 79(22):11011-9. PubMed ID: 25335115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F(-) Ions.
    Suresh VM; Bandyopadhyay A; Roy S; Pati SK; Maji TK
    Chemistry; 2015 Jul; 21(30):10799-804. PubMed ID: 26074403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective and 1,2-cis-α-Stereoselective Glycosylation Utilizing Glycosyl-Acceptor-Derived Boronic Ester Catalyst.
    Nakagawa A; Tanaka M; Hanamura S; Takahashi D; Toshima K
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10935-9. PubMed ID: 26205146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective recognition between aromatics and aliphatics by cage-shaped borates supported by a machine learning approach.
    Tsutsui Y; Yanaka I; Takeda K; Kondo M; Takizawa S; Kojima R; Konishi A; Yasuda M
    Org Biomol Chem; 2024 May; 22(21):4283-4291. PubMed ID: 38602393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.