These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35880578)
21. Mechanism and optimisation of the homoboroproline bifunctional catalytic asymmetric aldol reaction: Lewis acid tuning through in situ esterification. Georgiou I; Whiting A Org Biomol Chem; 2012 Mar; 10(12):2422-30. PubMed ID: 22322664 [TBL] [Abstract][Full Text] [Related]
22. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology. Peng P; Schmidt RR Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624 [TBL] [Abstract][Full Text] [Related]
23. Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation. Sati GC; Martin JL; Xu Y; Malakar T; Zimmerman PM; Montgomery J J Am Chem Soc; 2020 Apr; 142(15):7235-7242. PubMed ID: 32207615 [TBL] [Abstract][Full Text] [Related]
24. Lewis Acid-Conjugated Pyrene Photoredox Catalyst Promoting the Addition Reaction of α-Silyl Amines with Benzalmalononitriles. Katayama Y; Mitsunuma H; Kanai M Chem Pharm Bull (Tokyo); 2022; 70(11):765-768. PubMed ID: 36328519 [TBL] [Abstract][Full Text] [Related]
25. Direct Mannich-Type Reactions Promoted by Frustrated Lewis Acid/Brønsted Base Catalysts. Chan JZ; Yao W; Hastings BT; Lok CK; Wasa M Angew Chem Int Ed Engl; 2016 Oct; 55(44):13877-13881. PubMed ID: 27690277 [TBL] [Abstract][Full Text] [Related]
26. Quantum chemical study of Diels-Alder reactions catalyzed by Lewis acid activated oxazaborolidines. Sakata K; Fujimoto H J Org Chem; 2013 Apr; 78(7):3095-103. PubMed ID: 23373629 [TBL] [Abstract][Full Text] [Related]
27. Glycosylation of α-amino acids by sugar acetate donors with InBr3. Minimally competent Lewis acids. Lefever MR; Szabò LZ; Anglin B; Ferracane M; Hogan J; Cooney L; Polt R Carbohydr Res; 2012 Apr; 351():121-5. PubMed ID: 22342206 [TBL] [Abstract][Full Text] [Related]
28. Carbon-CArbon bond formation by Lewis superacid catalysis. Dunach E Chem Biodivers; 2014 Nov; 11(11):1752-63. PubMed ID: 25408321 [TBL] [Abstract][Full Text] [Related]
29. Substrate-Directed Lewis-Acid Catalysis for Peptide Synthesis. Muramatsu W; Hattori T; Yamamoto H J Am Chem Soc; 2019 Aug; 141(31):12288-12295. PubMed ID: 31309835 [TBL] [Abstract][Full Text] [Related]
30. Pyro-Borates, Spiro-Borates, and Boroxinates of BINOL-Assembly, Structures, and Reactivity. Hu G; Gupta AK; Huang L; Zhao W; Yin X; Osminski WEG; Huang RH; Wulff WD; Izzo JA; Vetticatt MJ J Am Chem Soc; 2017 Aug; 139(30):10267-10285. PubMed ID: 28657739 [TBL] [Abstract][Full Text] [Related]
31. Asymmetric Synthesis of Chromans Through Bifunctional Enamine-Metal Lewis Acid Catalysis. Davis J; Gharaee M; Karunaratne CV; Cortes Vazquez J; Haynes M; Luo W; Nesterov VN; Cundari T; Wang H Chemistry; 2022 May; 28(27):e202200224. PubMed ID: 35298095 [TBL] [Abstract][Full Text] [Related]
32. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions. Wang Y; Wang F; Song Q; Xin Q; Xu S; Xu J J Am Chem Soc; 2013 Jan; 135(4):1506-15. PubMed ID: 23228093 [TBL] [Abstract][Full Text] [Related]
33. Catalytic C-H bond activation at nanoscale Lewis acidic aluminium fluorides: H/D exchange reactions at aromatic and aliphatic hydrocarbons. Prechtl MH; Teltewskoi M; Dimitrov A; Kemnitz E; Braun T Chemistry; 2011 Dec; 17(51):14385-8. PubMed ID: 22125129 [TBL] [Abstract][Full Text] [Related]
34. Stereodivergent Mannich reaction of bis(trimethylsilyl)ketene acetals with N-tert-butanesulfinyl imines by Lewis acid or Lewis base activation, a one-pot protocol to obtain chiral β-amino acids. Cantú-Reyes M; Alvarado-Beltrán I; Ballinas-Indilí R; Álvarez-Toledano C; Hernández-Rodríguez M Org Biomol Chem; 2017 Sep; 15(36):7705-7709. PubMed ID: 28875215 [TBL] [Abstract][Full Text] [Related]
35. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality. Zhang L; Meggers E Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920 [TBL] [Abstract][Full Text] [Related]
36. Biased Borate Esterification during Nucleoside Phosphorylase-Catalyzed Reactions: Apparent Equilibrium Shifts and Kinetic Implications. Kaspar F; Brandt F; Westarp S; Eilert L; Kemper S; Kurreck A; Neubauer P; Jacob CR; Schallmey A Angew Chem Int Ed Engl; 2023 May; 62(20):e202218492. PubMed ID: 36655928 [TBL] [Abstract][Full Text] [Related]
37. NMR Quantification of the Effects of Ligands and Counterions on Lewis Acid Catalysis. Jennings JJ; Wigman BW; Armstrong BM; Franz AK J Org Chem; 2019 Dec; 84(24):15845-15853. PubMed ID: 31747746 [TBL] [Abstract][Full Text] [Related]
38. Low-oxidation state indium-catalyzed C-C bond formation. Schneider U; Kobayashi S Acc Chem Res; 2012 Aug; 45(8):1331-44. PubMed ID: 22626010 [TBL] [Abstract][Full Text] [Related]
39. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts. Panagiotopoulou P; Martin N; Vlachos DG ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846 [TBL] [Abstract][Full Text] [Related]
40. Unified Approach to Isoindolinones and THIQs via Lewis Acid Catalyzed Domino Mukaiyama-Mannich Lactamization/Alkylations: Application in the Synthesis of (±)-Homolaudanosine. Dhanasekaran S; Kayet A; Suneja A; Bisai V; Singh VK Org Lett; 2015 Jun; 17(11):2780-3. PubMed ID: 25992840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]