BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35880584)

  • 1. Reconfiguration of DNA nanostructures induced by enzymatic ligation treatment.
    Bai T; Zhang J; Huang K; Wang W; Chen B; Li Y; Zhao M; Zhang S; Zhu C; Liu D; Wei B
    Nucleic Acids Res; 2022 Aug; 50(14):8392-8398. PubMed ID: 35880584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
    Chang X; Yang Q; Lee J; Zhang F
    Curr Top Med Chem; 2022; 22(8):652-667. PubMed ID: 35319373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization and structural changes of 2D DNA origami by enzymatic ligation.
    Rajendran A; Krishnamurthy K; Giridasappa A; Nakata E; Morii T
    Nucleic Acids Res; 2021 Aug; 49(14):7884-7900. PubMed ID: 34289063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5' to 5' and 3' to 3' Chemical Ligation of Oligonucleotides.
    Bardales AC; Mills JR; Kolpashchikov DM
    Bioconjug Chem; 2024 Jan; 35(1):28-33. PubMed ID: 38135674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical ligation of an entire DNA origami nanostructure.
    Weizenmann N; Scheidgen-Kleyboldt G; Ye J; Krause CB; Kauert D; Helmi S; Rouillon C; Seidel R
    Nanoscale; 2021 Oct; 13(41):17556-17565. PubMed ID: 34657945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.
    Tian C; Zhang C
    Methods Mol Biol; 2017; 1500():11-26. PubMed ID: 27812998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification Techniques for Three-Dimensional DNA Nanostructures.
    Meyer TA
    Methods Mol Biol; 2017; 1500():109-119. PubMed ID: 27813004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures.
    Fu J; Liu M; Liu Y; Yan H
    Acc Chem Res; 2012 Aug; 45(8):1215-26. PubMed ID: 22642503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-Free Ligation of 5'-Phosphorylated Oligodeoxynucleotides in a DNA Nanostructure.
    Kramer M; Richert C
    Chem Biodivers; 2017 Sep; 14(9):. PubMed ID: 28710838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous and Programmable Reorganization of DNA-Based Polymers Using Redox Chemistry.
    Gentile S; Del Grosso E; Prins LJ; Ricci F
    Chemistry; 2023 May; 29(30):e202300394. PubMed ID: 37076949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures.
    Petersen P; Tikhomirov G; Qian L
    Nat Commun; 2018 Dec; 9(1):5362. PubMed ID: 30560865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands.
    Maye MM; Kumara MT; Nykypanchuk D; Sherman WB; Gang O
    Nat Nanotechnol; 2010 Feb; 5(2):116-20. PubMed ID: 20023646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex reconfiguration of DNA nanostructures.
    Wei B; Ong LL; Chen J; Jaffe AS; Yin P
    Angew Chem Int Ed Engl; 2014 Jul; 53(29):7475-9. PubMed ID: 24899518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent tethering of protruding arms for addressable DNA nanostructures.
    SaccĂ  B; Niemeyer CM
    Small; 2011 Oct; 7(20):2887-98. PubMed ID: 21901826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic DNA nanotechnology using strand-displacement reactions.
    Zhang DY; Seelig G
    Nat Chem; 2011 Feb; 3(2):103-13. PubMed ID: 21258382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.