BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 35880806)

  • 21. Sparsity-induced dynamic guided filtering approach for sparse-view data toward low-dose x-ray computed tomography.
    Yu W; Wang C; Nie X; Zeng D
    Phys Med Biol; 2018 Nov; 63(23):235016. PubMed ID: 30484434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient low-dose CT artifact mitigation using an artifact-matched prior scan.
    Xu W; Mueller K
    Med Phys; 2012 Aug; 39(8):4748-60. PubMed ID: 22894400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A platform-independent method to reduce CT truncation artifacts using discriminative dictionary representations.
    Chen Y; Budde A; Li K; Li Y; Hsieh J; Chen GH
    Med Phys; 2017 Jan; 44(1):121-131. PubMed ID: 28102942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-dose CT reconstruction method based on prior information of normal-dose image.
    Chen Z; Zhang Q; Zhou C; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    J Xray Sci Technol; 2020; 28(6):1091-1111. PubMed ID: 33044223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Sparse-view CT image restoration
    Wei Z; Wang Y; Tao X; Jia X; Bian Z; Chen G; Li M; Ma K; Li B; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Nov; 39(11):1320-1328. PubMed ID: 31852651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CT artifact correction for sparse and truncated projection data using generative adversarial networks.
    Podgorsak AR; Shiraz Bhurwani MM; Ionita CN
    Med Phys; 2021 Feb; 48(2):615-626. PubMed ID: 32996149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artifact suppression for breast specimen imaging in micro CBCT using deep learning.
    Aootaphao S; Puttawibul P; Thajchayapong P; Thongvigitmanee SS
    BMC Med Imaging; 2024 Feb; 24(1):34. PubMed ID: 38321390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer.
    Zhou B; Zhou SK; Duncan JS; Liu C
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1792-1804. PubMed ID: 33729929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. End-to-end deep learning for interior tomography with low-dose x-ray CT.
    Han Y; Wu D; Kim K; Li Q
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35390782
    [No Abstract]   [Full Text] [Related]  

  • 31. Sparse-view CT reconstruction based on multi-level wavelet convolution neural network.
    Lee M; Kim H; Kim HJ
    Phys Med; 2020 Dec; 80():352-362. PubMed ID: 33279829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography.
    Zhou B; Chen X; Zhou SK; Duncan JS; Liu C
    Med Image Anal; 2022 Jan; 75():102289. PubMed ID: 34758443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generalized deep iterative reconstruction for sparse-view CT imaging.
    Su T; Cui Z; Yang J; Zhang Y; Liu J; Zhu J; Gao X; Fang S; Zheng H; Ge Y; Liang D
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34847538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning.
    Wu D; Kim K; Li Q
    Med Phys; 2021 Dec; 48(12):7657-7672. PubMed ID: 34791655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dense and U-shaped transformer with dual-domain multi-loss function for sparse-view CT reconstruction.
    Liu P; Fang C; Qiao Z
    J Xray Sci Technol; 2024; 32(2):207-228. PubMed ID: 38306086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography.
    Niwa S; Ichikawa K; Kawashima H; Takata T; Minami S; Mitsui W
    Comput Biol Med; 2021 Aug; 135():104583. PubMed ID: 34216891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Successive iterative restoration applied to streak artifact reduction in X-ray CT image of dento-alveolar region.
    Dong J; Kondo A; Abe K; Hayakawa Y
    Int J Comput Assist Radiol Surg; 2011 Sep; 6(5):635-40. PubMed ID: 21207177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-scale dilated dense reconstruction network for limited-angle computed tomography.
    Zhou H; Zhu Y; Zhang H; Zhao X; Zhang P
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36821860
    [No Abstract]   [Full Text] [Related]  

  • 40. Deep convolutional-neural-network-based metal artifact reduction for CT-guided interventional oncology procedures (MARIO).
    Cao W; Parvinian A; Adamo D; Welch B; Callstrom M; Ren L; Missert A; Favazza CP
    Med Phys; 2024 Jun; 51(6):4231-4242. PubMed ID: 38353644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.