These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35880810)

  • 1. Machine Learning Guided Discovery of Non-Hemolytic Membrane Disruptive Anticancer Peptides.
    Zakharova E; Orsi M; Capecchi A; Reymond JL
    ChemMedChem; 2022 Sep; 17(17):e202200291. PubMed ID: 35880810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning designs non-hemolytic antimicrobial peptides.
    Capecchi A; Cai X; Personne H; Köhler T; van Delden C; Reymond JL
    Chem Sci; 2021 Jul; 12(26):9221-9232. PubMed ID: 34349895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery.
    Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J
    Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-guided discovery and design of non-hemolytic peptides.
    Plisson F; Ramírez-Sánchez O; Martínez-Hernández C
    Sci Rep; 2020 Oct; 10(1):16581. PubMed ID: 33024236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy.
    Aronson MR; Simonson AW; Orchard LM; Llinás M; Medina SH
    Acta Biomater; 2018 Oct; 80():269-277. PubMed ID: 30240951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Anticancer Peptides by Constructive Machine Learning.
    Grisoni F; Neuhaus CS; Gabernet G; Müller AT; Hiss JA; Schneider G
    ChemMedChem; 2018 Jul; 13(13):1300-1302. PubMed ID: 29679519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.
    Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A
    Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity.
    Hadianamrei R; Tomeh MA; Brown S; Wang J; Zhao X
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112165. PubMed ID: 34715505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of anticancer peptides by ensemble artificial neural networks.
    Grisoni F; Neuhaus CS; Hishinuma M; Gabernet G; Hiss JA; Kotera M; Schneider G
    J Mol Model; 2019 Apr; 25(5):112. PubMed ID: 30953170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of Machine Learning Algorithms in the Prediction and Design of Anticancer Peptides.
    Basith S; Manavalan B; Shin TH; Lee DY; Lee G
    Curr Protein Pept Sci; 2020; 21(12):1242-1250. PubMed ID: 31957610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides.
    Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Bąkała M; Słowik J; Gagat P
    Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33142753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Computational Methods for Identifying Anticancer Peptides.
    Feng P; Wang Z
    Curr Drug Targets; 2019; 20(5):481-487. PubMed ID: 30068270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.
    Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z
    IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.