These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35880810)

  • 21. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane Association Modes of Natural Anticancer Peptides: Mechanistic Details on Helicity, Orientation, and Surface Coverage.
    Quemé-Peña M; Juhász T; Kohut G; Ricci M; Singh P; Szigyártó IC; Papp ZI; Fülöp L; Beke-Somfai T
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties.
    Huang KY; Tseng YJ; Kao HJ; Chen CH; Yang HH; Weng SL
    Sci Rep; 2021 Jun; 11(1):13594. PubMed ID: 34193950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ACPScanner: Prediction of Anticancer Peptides by Integrated Machine Learning Methodologies.
    Zhong G; Deng L
    J Chem Inf Model; 2024 Feb; 64(3):1092-1104. PubMed ID: 38277774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of helicity on the anticancer mechanism of action of cationic-helical peptides.
    Huang YB; He LY; Jiang HY; Chen YX
    Int J Mol Sci; 2012; 13(6):6849-6862. PubMed ID: 22837667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HemoNet: Predicting hemolytic activity of peptides with integrated feature learning.
    Yaseen A; Gull S; Akhtar N; Amin I; Minhas F
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150021. PubMed ID: 34353244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating In Silico and In Vitro Approaches to Identify Natural Peptides with Selective Cytotoxicity against Cancer Cells.
    Kao HJ; Weng TH; Chen CH; Chen YC; Chi YH; Huang KY; Weng SL
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anticancer Activities of Natural and Synthetic Peptides.
    Hilchie AL; Hoskin DW; Power Coombs MR
    Adv Exp Med Biol; 2019; 1117():131-147. PubMed ID: 30980357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs.
    Huang Y; Feng Q; Yan Q; Hao X; Chen Y
    Mini Rev Med Chem; 2015; 15(1):73-81. PubMed ID: 25382016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.
    Timmons PB; Hewage CM
    Sci Rep; 2020 Jul; 10(1):10869. PubMed ID: 32616760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mode of action of anticancer peptides (ACPs) from amphibian origin.
    Oelkrug C; Hartke M; Schubert A
    Anticancer Res; 2015 Feb; 35(2):635-43. PubMed ID: 25667440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides.
    Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploratory data analysis of physicochemical parameters of natural antimicrobial and anticancer peptides: Unraveling the patterns and trends for the rational design of novel peptides.
    Saini S; Rathore A; Sharma S; Saini A
    Bioimpacts; 2024; 14(1):26438. PubMed ID: 38327633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating Traditional Machine Learning and Deep Learning for Precision Screening of Anticancer Peptides: A Novel Approach for Efficient Drug Discovery.
    Xu M; Pang J; Ye Y; Zhang Z
    ACS Omega; 2024 Apr; 9(14):16820-16831. PubMed ID: 38617603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uncovering a Hub Signaling Pathway of Antimicrobial-Antifungal-Anticancer Peptides' Axis on Short Cationic Peptides via Network Pharmacology Study.
    Oh KK; Adnan M; Cho DH
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information.
    Sun M; Yang S; Hu X; Zhou Y
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.