These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35880857)

  • 21. Oscillatory and Steady Shear Rheology of Model Hydrophobically Modified Ethoxylated Urethane-Thickened Waterborne Paints.
    Ginzburg VV; Chatterjee T; Nakatani AI; Van Dyk AK
    Langmuir; 2018 Sep; 34(37):10993-11002. PubMed ID: 30142976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surfactant modulated interaction of hydrophobically modified ethoxylated urethane (HEUR) polymers with impenetrable surfaces.
    Ibrahim MS; Rogers S; Mahmoudi N; Murray M; Szczygiel A; Green B; Alexander BD; Griffiths PC
    J Colloid Interface Sci; 2019 Mar; 539():126-134. PubMed ID: 30579216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging.
    Farrar CT; Dai G; Novikov M; Rosenzweig A; Weissleder R; Rosen BR; Sosnovik DE
    NMR Biomed; 2008 Jun; 21(5):453-63. PubMed ID: 17918777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural characterization and adsorption properties of pluronic F127 onto iron oxides magnetic nanoparticles.
    Dehvari K; Lin KS; Wang SS
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2361-7. PubMed ID: 24745232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications.
    Yu F; Yang VC
    J Biomed Mater Res A; 2010 Mar; 92(4):1468-75. PubMed ID: 19402138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coating thickness of magnetic iron oxide nanoparticles affects R2 relaxivity.
    LaConte LE; Nitin N; Zurkiya O; Caruntu D; O'Connor CJ; Hu X; Bao G
    J Magn Reson Imaging; 2007 Dec; 26(6):1634-41. PubMed ID: 17968941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulating light-emitting polymers in block copolymer micelles.
    Jung Y; Hickey RJ; Park SJ
    Langmuir; 2010 May; 26(10):7540-3. PubMed ID: 20232833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI).
    Arami H; Krishnan KM
    IEEE Trans Magn; 2013 Jul; 49(7):3500-3503. PubMed ID: 25554710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Iron Oxide Nanoparticles for Biomedical Applications.
    Jiang K; Zhang L; Bao G
    Curr Opin Biomed Eng; 2021 Dec; 20():. PubMed ID: 35211662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and modulation of magnetically supramolecular hydrogels.
    Ma D; Zhang LM
    J Phys Chem B; 2008 May; 112(20):6315-21. PubMed ID: 18433160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of magnetic interactions between clusters on particle orientational characteristics and viscosity of a colloidal dispersion composed of ferromagnetic spherocylinder particles: analysis by means of mean field approximation for a simple shear flow.
    Satoh A
    J Colloid Interface Sci; 2005 Sep; 289(1):276-85. PubMed ID: 16009234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ synthesis of magnetic iron oxide nanoparticles in chitosan hydrogels as a reaction field: Effect of cross-linking density.
    Miyazaki T; Iwanaga A; Shirosaki Y; Kawashita M
    Colloids Surf B Biointerfaces; 2019 Jul; 179():334-339. PubMed ID: 30986701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: effect of peptide functional group on self-assembly and gelation behavior.
    Chiang PR; Lin TY; Tsai HC; Chen HL; Liu SY; Chen FR; Hwang YS; Chu IM
    Langmuir; 2013 Dec; 29(51):15981-91. PubMed ID: 24328368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.
    Nowak-Jary J; Machnicka B
    J Nanobiotechnology; 2022 Jun; 20(1):305. PubMed ID: 35761279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release.
    Lee SY; Jeon SI; Sim SB; Byun Y; Ahn CH
    Acta Biomater; 2021 Sep; 131():286-301. PubMed ID: 34246803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair.
    Lacko CS; Singh I; Wall MA; Garcia AR; Porvasnik SL; Rinaldi C; Schmidt CE
    J Neural Eng; 2020 Feb; 17(1):016057. PubMed ID: 31577998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.
    Reufer M; Dietsch H; Gasser U; Hirt A; Menzel A; Schurtenberger P
    J Phys Chem B; 2010 Apr; 114(14):4763-9. PubMed ID: 20329762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties.
    Shen T; Weissleder R; Papisov M; Bogdanov A; Brady TJ
    Magn Reson Med; 1993 May; 29(5):599-604. PubMed ID: 8505895
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.