These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35880876)

  • 1. DciA Helicase Operators Exhibit Diversity across Bacterial Phyla.
    Blaine HC; Burke JT; Ravi J; Stallings CL
    J Bacteriol; 2022 Aug; 204(8):e0016322. PubMed ID: 35880876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria.
    Blaine HC; Simmons LA; Stallings CL
    J Bacteriol; 2023 Apr; 205(4):e0048722. PubMed ID: 36877032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DciA is an ancestral replicative helicase operator essential for bacterial replication initiation.
    Brézellec P; Vallet-Gely I; Possoz C; Quevillon-Cheruel S; Ferat JL
    Nat Commun; 2016 Nov; 7():13271. PubMed ID: 27830752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rv0004 is a new essential member of the mycobacterial DNA replication machinery.
    Mann KM; Huang DL; Hooppaw AJ; Logsdon MM; Richardson K; Lee HJ; Kimmey JM; Aldridge BB; Stallings CL
    PLoS Genet; 2017 Nov; 13(11):e1007115. PubMed ID: 29176877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Insights of the DciA Helicase Loader in Its Relationship with DNA.
    Cargemel C; Baconnais S; Aumont-Nicaise M; Noiray M; Maurin L; Andreani J; Walbott H; Le Cam E; Ochsenbein F; Marsin S; Quevillon-Cheruel S
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LH-DH module of bacterial replicative helicases is the common binding site for DciA and other helicase loaders.
    Cargemel C; Marsin S; Noiray M; Legrand P; Bounoua H; Li de la Sierra-Gallay I; Walbott H; Quevillon-Cheruel S
    Acta Crystallogr D Struct Biol; 2023 Feb; 79(Pt 2):177-187. PubMed ID: 36762863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli and Bacillus subtilis PriA proteins essential for recombination-dependent DNA replication: involvement of ATPase/helicase activity of PriA for inducible stable DNA replication.
    Masai H; Deneke J; Furui Y; Tanaka T; Arai KI
    Biochimie; 1999; 81(8-9):847-57. PubMed ID: 10572298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Bacillus subtilis PriA Winged Helix Domain Is Critical for Surviving DNA Damage.
    Matthews LA; Simmons LA
    J Bacteriol; 2022 Mar; 204(3):e0053921. PubMed ID: 35007156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication.
    Petit MA; Dervyn E; Rose M; Entian KD; McGovern S; Ehrlich SD; Bruand C
    Mol Microbiol; 1998 Jul; 29(1):261-73. PubMed ID: 9701819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the DnaB:DciA interplay reveals insights into the primary mode of loading of the bacterial replicative helicase.
    Marsin S; Adam Y; Cargemel C; Andreani J; Baconnais S; Legrand P; Li de la Sierra-Gallay I; Humbert A; Aumont-Nicaise M; Velours C; Ochsenbein F; Durand D; Le Cam E; Walbott H; Possoz C; Quevillon-Cheruel S; Ferat JL
    Nucleic Acids Res; 2021 Jun; 49(11):6569-6586. PubMed ID: 34107018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contrahelicase activities of the replication terminator proteins of Escherichia coli and Bacillus subtilis are helicase-specific and impede both helicase translocation and authentic DNA unwinding.
    Sahoo T; Mohanty BK; Lobert M; Manna AC; Bastia D
    J Biol Chem; 1995 Dec; 270(49):29138-44. PubMed ID: 7493939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-protein strategy for the functional loading of a cellular replicative DNA helicase.
    Velten M; McGovern S; Marsin S; Ehrlich SD; Noirot P; Polard P
    Mol Cell; 2003 Apr; 11(4):1009-20. PubMed ID: 12718886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Caulobacter crescentus DciA promotes chromosome replication through topological loading of the DnaB replicative helicase at replication forks.
    Ozaki S; Wang D; Wakasugi Y; Itani N; Katayama T
    Nucleic Acids Res; 2022 Dec; 50(22):12896-12912. PubMed ID: 36484102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bacillus subtilis DnaD protein: a putative link between DNA remodeling and initiation of DNA replication.
    Turner IJ; Scott DJ; Allen S; Roberts CJ; Soultanas P
    FEBS Lett; 2004 Nov; 577(3):460-4. PubMed ID: 15556628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domestication of Lambda Phage Genes into a Putative Third Type of Replicative Helicase Matchmaker.
    Brézellec P; Petit MA; Pasek S; Vallet-Gely I; Possoz C; Ferat JL
    Genome Biol Evol; 2017 Jun; 9(6):1561-1566. PubMed ID: 28854626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent evolution in two bacterial replicative helicase loaders.
    Chase J; Berger J; Jeruzalmi D
    Trends Biochem Sci; 2022 Jul; 47(7):620-630. PubMed ID: 35351361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SirA inhibits the essential DnaA:DnaD interaction to block helicase recruitment during Bacillus subtilis sporulation.
    Winterhalter C; Stevens D; Fenyk S; Pelliciari S; Marchand E; Soultanas P; Ilangovan A; Murray H
    Nucleic Acids Res; 2023 May; 51(9):4302-4321. PubMed ID: 36416272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral hijacking of a replicative helicase loader and its implications for helicase loading control and phage replication.
    Hood IV; Berger JM
    Elife; 2016 May; 5():. PubMed ID: 27244442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RecD2 helicase limits replication fork stress in Bacillus subtilis.
    Walsh BW; Bolz SA; Wessel SR; Schroeder JW; Keck JL; Simmons LA
    J Bacteriol; 2014 Apr; 196(7):1359-68. PubMed ID: 24443534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insight into replicative helicase loading in Escherichia coli.
    Horikoshi N; Kurumizaka H
    J Biochem; 2022 May; 171(6):605-607. PubMed ID: 35238386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.