These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 35881016)
1. Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery. Xu F; Dong G; Li J; Yang Q; Wang L; Zhao Y; Yan Y; Zhao J; Pang S; Guo D; Zhang Y; Leng J Int J Neural Syst; 2022 Sep; 32(9):2250039. PubMed ID: 35881016 [TBL] [Abstract][Full Text] [Related]
2. Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network. Zhang K; Xu G; Han Z; Ma K; Zheng X; Chen L; Duan N; Zhang S Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796607 [TBL] [Abstract][Full Text] [Related]
3. Self-Supervised EEG Representation Learning with Contrastive Predictive Coding for Post-Stroke Patients. Xu F; Yan Y; Zhu J; Chen X; Gao L; Liu Y; Shi W; Lou Y; Wang W; Leng J; Zhang Y Int J Neural Syst; 2023 Dec; 33(12):2350066. PubMed ID: 37990998 [TBL] [Abstract][Full Text] [Related]
4. Wasserstein generative adversarial network with gradient penalty and convolutional neural network based motor imagery EEG classification. Xiong H; Li J; Liu J; Song J; Han Y J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39116892 [No Abstract] [Full Text] [Related]
5. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response. Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293 [TBL] [Abstract][Full Text] [Related]
6. Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface. Nagarajan A; Robinson N; Ang KK; Chua KSG; Chew E; Guan C J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38091617 [No Abstract] [Full Text] [Related]
7. Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach. Habashi AG; Azab AM; Eldawlatly S; Aly GM J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 39029497 [No Abstract] [Full Text] [Related]
8. A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network. Du X; Ding X; Xi M; Lv Y; Qiu S; Liu Q Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672024 [TBL] [Abstract][Full Text] [Related]
9. Classification of Left-Versus Right-Hand Motor Imagery in Stroke Patients Using Supplementary Data Generated by CycleGAN. Xu F; Rong F; Leng J; Sun T; Zhang Y; Siddharth S; Jung TP IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2417-2424. PubMed ID: 34710045 [TBL] [Abstract][Full Text] [Related]
10. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation. Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922 [TBL] [Abstract][Full Text] [Related]
11. A transfer learning framework based on motor imagery rehabilitation for stroke. Xu F; Miao Y; Sun Y; Guo D; Xu J; Wang Y; Li J; Li H; Dong G; Rong F; Leng J; Zhang Y Sci Rep; 2021 Oct; 11(1):19783. PubMed ID: 34611209 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the Efficacy of EEG-Based MI-BCI With Visual Feedback and EEG Correlates of Mental Fatigue for Upper-Limb Stroke Rehabilitation. Foong R; Ang KK; Quek C; Guan C; Phua KS; Kuah CWK; Deshmukh VA; Yam LHL; Rajeswaran DK; Tang N; Chew E; Chua KSG IEEE Trans Biomed Eng; 2020 Mar; 67(3):786-795. PubMed ID: 31180829 [TBL] [Abstract][Full Text] [Related]
13. Classification of EEG signals related to real and imagery knee movements using deep learning for brain computer interfaces. Lee Y; Lee HJ; Tae KS Technol Health Care; 2023; 31(3):933-942. PubMed ID: 36617798 [TBL] [Abstract][Full Text] [Related]
14. A tensor-based scheme for stroke patients' motor imagery EEG analysis in BCI-FES rehabilitation training. Liu Y; Li M; Zhang H; Wang H; Li J; Jia J; Wu Y; Zhang L J Neurosci Methods; 2014 Jan; 222():238-49. PubMed ID: 24280103 [TBL] [Abstract][Full Text] [Related]
15. A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Mattioli F; Porcaro C; Baldassarre G J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34920443 [No Abstract] [Full Text] [Related]
16. Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network. Miao M; Hu W; Yin H; Zhang K Comput Math Methods Med; 2020; 2020():1981728. PubMed ID: 32765639 [TBL] [Abstract][Full Text] [Related]
17. Time-Frequency-Space EEG Decoding Model Based on Dense Graph Convolutional Network for Stroke. Leng J; Li H; Shi W; Gao L; Lv C; Wang C; Xu F; Zhang Y; Jung TP IEEE J Biomed Health Inform; 2024 Sep; 28(9):5214-5226. PubMed ID: 38857138 [TBL] [Abstract][Full Text] [Related]
18. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. Ang KK; Guan C; Phua KS; Wang C; Teh I; Chen CW; Chew E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4128-31. PubMed ID: 23366836 [TBL] [Abstract][Full Text] [Related]
19. Generative Adversarial Networks-Based Data Augmentation for Brain-Computer Interface. Fahimi F; Dosen S; Ang KK; Mrachacz-Kersting N; Guan C IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4039-4051. PubMed ID: 32841127 [TBL] [Abstract][Full Text] [Related]
20. Portable deep-learning decoder for motor imaginary EEG signals based on a novel compact convolutional neural network incorporating spatial-attention mechanism. Wu Z; Tang X; Wu J; Huang J; Shen J; Hong H Med Biol Eng Comput; 2023 Sep; 61(9):2391-2404. PubMed ID: 37095297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]