These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35881294)

  • 1. Coupling humic acid in Fe-bearing montmorillonite for enhanced adsorption and catalytic degradation of tetracycline.
    Ye G; Deng H; Zhou S; Gao Y; Yan C
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):90984-90994. PubMed ID: 35881294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetracycline removal enhancement with Fe-saturated nanoporous montmorillonite in a tripartite adsorption/desorption/photo-Fenton degradation process.
    Chahardahmasoumi S; Jalali SAH; Sarvi MN
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57248-57260. PubMed ID: 35347598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of aniline adsorption-desorption mechanism on various organo-mineral complexes.
    Ma Y; Wu X; Wang T; Zhou S; Cui B; Sha H; Lv B
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39871-39882. PubMed ID: 36600159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of tetracycline by UV/Fe
    Zeng H; Shen S; Cai A; Sun Q; Wang L; Zhu S; Li X; Deng J
    Chemosphere; 2022 Nov; 307(Pt 4):136072. PubMed ID: 35988766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano Fe
    Sun Z; Feng L; Fang G; Chu L; Zhou D; Gao J
    J Environ Sci (China); 2021 Mar; 101():248-259. PubMed ID: 33334520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(III)/Fe(II) cycle confined in the nanoscale interlayer of Fe(III)-saturated montmorillonite.
    Wang P; Liu X; Qiu W; Wang F; Jiang H; Chen M; Zhang W; Ma J
    Water Res; 2020 Sep; 182():116030. PubMed ID: 32679388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on adsorption and catalytic degradation of tetracycline by five magnetic mineral functional materials prepared from steel pickling waste liquor.
    Chen J; Lian J; Fang Z
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78926-78941. PubMed ID: 35699883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.
    Kavurmaci SS; Bekbolet M
    Environ Technol; 2014; 35(17-20):2389-400. PubMed ID: 25145193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Interactions of Humic Acid and Minerals Reveal Mechanisms of Carbon Protection in Soil.
    Yu M; Hua Y; Sarwar MT; Yang H
    Environ Sci Technol; 2023 Jan; 57(1):286-296. PubMed ID: 36524600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline.
    He Z; Xu X; Wang B; Lu Z; Shi D; Wu W
    J Environ Manage; 2022 Nov; 322():116077. PubMed ID: 36055098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation.
    Zeng Q; Wang X; Liu X; Huang L; Hu J; Chu R; Tolic N; Dong H
    Environ Sci Technol; 2020 Dec; 54(23):15013-15023. PubMed ID: 32991154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of humic acid on lysozyme interaction with montmorillonite and kaolinite.
    Li Y; Koopal LK; Tan W; Chai Y; Chen Y; Wu C; Tang X
    Sci Total Environ; 2022 Aug; 834():155370. PubMed ID: 35460783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Zhang Y; Lu Y; Qian A; Zhang P; Cui Y; Yuan S
    Environ Sci Technol; 2021 Oct; 55(19):13366-13375. PubMed ID: 34551244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Goethite-humic acid coprecipitate mediated Fenton-like degradation of sulfanilamide: The role of coprecipitated humic acid in accelerating Fe(III)/Fe(II) cycle and degradation efficiency.
    Yu H; Liu G; Jin R; Zhou J
    J Hazard Mater; 2021 Feb; 403():124026. PubMed ID: 33265047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible light enhanced persulfate activation for degradation of tetracycline via boosting adsorption of persulfate by ligand-deficient MIL-101(Fe) icosahedron.
    Cheng G; Yuan C; Ruan W; Ma B; Zhang X; Yuan X; Li Z; Wang D; Teng F
    Chemosphere; 2023 Mar; 317():137857. PubMed ID: 36642131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and oxidative transformation of phenolic acids By Fe(III)-montmorillonite.
    Polubesova T; Eldad S; Chefetz B
    Environ Sci Technol; 2010 Jun; 44(11):4203-9. PubMed ID: 20455586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32.
    Zuo H; Kukkadapu R; Zhu Z; Ni S; Huang L; Zeng Q; Liu C; Dong H
    Sci Total Environ; 2020 Nov; 741():140213. PubMed ID: 32603937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe/Co redox and surficial hydroxyl potentiation in the FeCo
    Zhu T; Jiang J; Wang J; Zhang Z; Zhang J; Chang J
    J Environ Manage; 2022 Jul; 313():114855. PubMed ID: 35390662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step synthesis of natural montmorillonite/hematite composites with enhanced persulfate catalytic activity for sulfamethoxazole degradation: Efficiency, kinetics, and mechanism.
    He P; Xiong Y; Chen Y; Liu M; Zhu J; Gan M
    Environ Res; 2022 Mar; 204(Pt C):112326. PubMed ID: 34748776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of humic acids and alpha-endosulfan by clay minerals.
    Hengpraprom S; Lee CM; Coates JT
    Environ Toxicol Chem; 2006 Jan; 25(1):11-7. PubMed ID: 16494219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.