BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35881463)

  • 21. The slope associated with nadir prostate-specific antigen is prognostically significant in men with hormone-sensitive prostate cancer after primary androgen deprivation therapy.
    Zhenhao Z; Xiaofeng C; Hao J; Ming Y; Hongtao Z; Wenrui H; Cheng Z; Xiaochen Z; Gongxian W
    Cancer Med; 2022 Sep; 11(17):3251-3259. PubMed ID: 35307955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prognostic value of PSA nadir < or =4 ng/mL within 4 months of high-dose radiotherapy for locally advanced prostate cancer.
    Nickers P; Albert A; Waltregny D; Deneufbourg JM
    Int J Radiat Oncol Biol Phys; 2006 May; 65(1):73-7. PubMed ID: 16503381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs.
    Dhas N; Kudarha R; Garkal A; Ghate V; Sharma S; Panzade P; Khot S; Chaudhari P; Singh A; Paryani M; Lewis S; Garg N; Singh N; Bangar P; Mehta T
    J Control Release; 2021 Feb; 330():257-283. PubMed ID: 33345832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review.
    Lin N; Huang J; Dufresne A
    Nanoscale; 2012 Jun; 4(11):3274-94. PubMed ID: 22565323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers.
    Abdo GG; Zagho MM; Al Moustafa AE; Khalil A; Elzatahry AA
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1893-1908. PubMed ID: 33749098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polysaccharide nanoparticles: from fabrication to applications.
    Plucinski A; Lyu Z; Schmidt BVKJ
    J Mater Chem B; 2021 Sep; 9(35):7030-7062. PubMed ID: 33928990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.
    Pina S; Oliveira JM; Reis RL
    Adv Mater; 2015 Feb; 27(7):1143-69. PubMed ID: 25580589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications.
    Wen Y; Oh JK
    Macromol Rapid Commun; 2014 Nov; 35(21):1819-32. PubMed ID: 25283788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications.
    Khodadadi Yazdi M; Zarrintaj P; Khodadadi A; Arefi A; Seidi F; Shokrani H; Saeb MR; Mozafari M
    Carbohydr Polym; 2022 Feb; 278():118998. PubMed ID: 34973800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polysaccharide-Based Nanobiomaterials as Controlled Release Systems for Tissue Engineering Applications.
    Rodriguez-Velazquez E; Alatorre-Meda M; Mano JF
    Curr Pharm Des; 2015; 21(33):4837-50. PubMed ID: 26290209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications.
    Fragal EH; Fragal VH; Silva EP; Paulino AT; da Silva Filho EC; Mauricio MR; Silva R; Rubira AF; Muniz EC
    Carbohydr Polym; 2022 Sep; 292():119665. PubMed ID: 35725166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supramolecular Polymer Nanocomposites for Biomedical Applications.
    Li X; Xu W; Xin Y; Yuan J; Ji Y; Chu S; Liu J; Luo Q
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33572052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research progress in galactomannan-based nanomaterials: Synthesis and application.
    Yadav H; Maiti S
    Int J Biol Macromol; 2020 Nov; 163():2113-2126. PubMed ID: 32950525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in Magnetic Nanoparticles for Biomedical Applications.
    Cardoso VF; Francesko A; Ribeiro C; Bañobre-López M; Martins P; Lanceros-Mendez S
    Adv Healthc Mater; 2018 Mar; 7(5):. PubMed ID: 29280314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy.
    Wang X; Cheng L
    Nanoscale; 2019 Aug; 11(34):15685-15708. PubMed ID: 31355405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-Institutional Analysis of Prostate-Specific Antigen Kinetics After Stereotactic Body Radiation Therapy.
    Jiang NY; Dang AT; Yuan Y; Chu FI; Shabsovich D; King CR; Collins SP; Aghdam N; Suy S; Mantz CA; Miszczyk L; Napieralska A; Namysl-Kaletka A; Bagshaw H; Prionas N; Buyyounouski MK; Jackson WC; Spratt DE; Nickols NG; Steinberg ML; Kupelian PA; Kishan AU
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(3):628-636. PubMed ID: 31276777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.