BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35881666)

  • 21. KCOSS: an ultra-fast k-mer counter for assembled genome analysis.
    Tang D; Li Y; Tan D; Fu J; Tang Y; Lin J; Zhao R; Du H; Zhao Z
    Bioinformatics; 2022 Jan; 38(4):933-940. PubMed ID: 34849595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast detection of maximal exact matches via fixed sampling of query K-mers and Bloom filtering of index K-mers.
    Liu Y; Zhang LY; Li J
    Bioinformatics; 2019 Nov; 35(22):4560-4567. PubMed ID: 30994891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and efficient short read mapping based on a succinct hash index.
    Zhang H; Chan Y; Fan K; Schmidt B; Liu W
    BMC Bioinformatics; 2018 Mar; 19(1):92. PubMed ID: 29523083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RMI-DBG algorithm: A more agile iterative de Bruijn graph algorithm in short read genome assembly.
    Hosseini ZZ; Rahimi SK; Forouzan E; Baraani A
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150005. PubMed ID: 33866959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hamming-shifting graph of genomic short reads: Efficient construction and its application for compression.
    Liu Y; Li J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009229. PubMed ID: 34280186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Colored de Bruijn Graph for Indexing Reads.
    Hasegawa N; Shimizu K
    J Comput Biol; 2023 Jun; 30(6):648-662. PubMed ID: 37115583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
    Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y
    PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid and scalable error correction algorithm for indel and substitution errors of long reads.
    Das AK; Goswami S; Lee K; Park SJ
    BMC Genomics; 2019 Dec; 20(Suppl 11):948. PubMed ID: 31856721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating the
    Manekar SC; Sathe SR
    Curr Genomics; 2019 Jan; 20(1):2-15. PubMed ID: 31015787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. deBGR: an efficient and near-exact representation of the weighted de Bruijn graph.
    Pandey P; Bender MA; Johnson R; Patro R
    Bioinformatics; 2017 Jul; 33(14):i133-i141. PubMed ID: 28881995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate determination of node and arc multiplicities in de bruijn graphs using conditional random fields.
    Steyaert A; Audenaert P; Fostier J
    BMC Bioinformatics; 2020 Sep; 21(1):402. PubMed ID: 32928110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads.
    Song L; Florea L
    Gigascience; 2015; 4():48. PubMed ID: 26500767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing.
    Karimi R; Hajdu A
    Evol Bioinform Online; 2016; 12():73-85. PubMed ID: 26884678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Squeakr: an exact and approximate k-mer counting system.
    Pandey P; Bender MA; Johnson R; Patro R; Berger B
    Bioinformatics; 2018 Feb; 34(4):568-575. PubMed ID: 29444235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
    Zerbino DR; Birney E
    Genome Res; 2008 May; 18(5):821-9. PubMed ID: 18349386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EDAR: an efficient error detection and removal algorithm for next generation sequencing data.
    Zhao X; Palmer LE; Bolanos R; Mircean C; Fasulo D; Wittenberg GM
    J Comput Biol; 2010 Nov; 17(11):1549-60. PubMed ID: 20973743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast Approximation of Frequent
    Pellegrina L; Pizzi C; Vandin F
    J Comput Biol; 2020 Apr; 27(4):534-549. PubMed ID: 31891535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A general near-exact k-mer counting method with low memory consumption enables de novo assembly of 106× human sequence data in 2.7 hours.
    Shi CH; Yip KY
    Bioinformatics; 2020 Dec; 36(Suppl_2):i625-i633. PubMed ID: 33381843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.