These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35882179)

  • 41. Identifying and imaging polymer functionality at high spatial resolution with core-loss EELS.
    Colby R; Williams REA; Carpenter DL; Bagués N; Ford BR; McComb DW
    Ultramicroscopy; 2023 Apr; 246():113688. PubMed ID: 36701963
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens.
    Kapp N; Studer D; Gehr P; Geiser M
    Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy.
    Egerton RF
    Ultramicroscopy; 2007 Aug; 107(8):575-86. PubMed ID: 17257759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New developments in electron energy loss spectroscopy.
    Keast VJ; Bosman M
    Microsc Res Tech; 2007 Mar; 70(3):211-9. PubMed ID: 17279511
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Searching ultimate nanometrology for AlOx thickness in magnetic tunnel junction by analytical electron microscopy and X-ray reflectometry.
    Song SA; Hirano T; Park JB; Kaji K; Kim KH; Terada S
    Microsc Microanal; 2005 Oct; 11(5):431-45. PubMed ID: 17481324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-filtering transmission electron microscopy (EFTEM) in the elemental analysis of pseudoexfoliative material.
    Schlötzer-Schrehardt U; Körtje KH; Erb C
    Curr Eye Res; 2001 Feb; 22(2):154-62. PubMed ID: 11402393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomic-scale determination of spontaneous magnetic reversal in oxide heterostructures.
    Saghayezhian M; Kouser S; Wang Z; Guo H; Jin R; Zhang J; Zhu Y; Pantelides ST; Plummer EW
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10309-10316. PubMed ID: 31068468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron energy loss spectroscopic imaging in biology.
    Simon GT; Heng YM
    Scanning Microsc; 1988 Mar; 2(1):257-66. PubMed ID: 3285454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial and spectral dynamics in STEM hyperspectral imaging using random scan patterns.
    Zobelli A; Woo SY; Tararan A; Tizei LHG; Brun N; Li X; Stéphan O; Kociak M; Tencé M
    Ultramicroscopy; 2020 May; 212():112912. PubMed ID: 31812451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoscale Multimodal Analysis of Sensitive Nanomaterials by Monochromated STEM-EELS in Low-Dose and Cryogenic Conditions.
    Chaupard M; Degrouard J; Li X; Stéphan O; Kociak M; Gref R; de Frutos M
    ACS Nano; 2023 Feb; 17(4):3452-3464. PubMed ID: 36745677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping.
    Leapman RD; Hunt JA; Buchanan RA; Andrews SB
    Ultramicroscopy; 1993 Feb; 49(1-4):225-34. PubMed ID: 8475601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3.
    Fitting L; Thiel S; Schmehl A; Mannhart J; Muller DA
    Ultramicroscopy; 2006; 106(11-12):1053-61. PubMed ID: 16867311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological applications of energy-filtered TEM.
    Saunders M; Shaw JA
    Methods Mol Biol; 2014; 1117():689-706. PubMed ID: 24357386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Progress in ultrahigh energy resolution EELS.
    Krivanek OL; Dellby N; Hachtel JA; Idrobo JC; Hotz MT; Plotkin-Swing B; Bacon NJ; Bleloch AL; Corbin GJ; Hoffman MV; Meyer CE; Lovejoy TC
    Ultramicroscopy; 2019 Aug; 203():60-67. PubMed ID: 30577954
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aberration-corrected STEM for atomic-resolution imaging and analysis.
    Krivanek OL; Lovejoy TC; Dellby N
    J Microsc; 2015 Sep; 259(3):165-72. PubMed ID: 25939916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EELS tomography in multiferroic nanocomposites: from spectrum images to the spectrum volume.
    Yedra L; Eljarrat A; Rebled JM; López-Conesa L; Dix N; Sánchez F; Estradé S; Peiró F
    Nanoscale; 2014 Jun; 6(12):6646-50. PubMed ID: 24816972
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy.
    Allen LJ; Findlay SD; Lupini AR; Oxley MP; Pennycook SJ
    Phys Rev Lett; 2003 Sep; 91(10):105503. PubMed ID: 14525490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in EELS spectroscopy by using new detector and new specimen preparation technologies.
    Scheu C; Gao M; Van Benthem K; Tsukimoto S; Schmidt S; Sigle W; Richter G; Thomas J
    J Microsc; 2003 Apr; 210(Pt 1):16-24. PubMed ID: 12694412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Benefits of direct electron detection and PCA for EELS investigation of organic photovoltaics materials.
    Haberfehlner G; Hoefler SF; Rath T; Trimmel G; Kothleitner G; Hofer F
    Micron; 2021 Jan; 140():102981. PubMed ID: 33202362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.