These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35882806)

  • 1. Differences Between Physiological and Pharmacological Actions of Taurine.
    Schaffer SW; Jong CJ; Ramila KC; Ito T; Kramer J
    Adv Exp Med Biol; 2022; 1370():311-321. PubMed ID: 35882806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taurine depresses cardiac contractility and enhances systemic heart glucose utilization in the cuttlefish, Sepia officinalis.
    MacCormack TJ; Callaghan NI; Sykes AV; Driedzic WR
    J Comp Physiol B; 2016 Feb; 186(2):215-27. PubMed ID: 26644087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired energy metabolism of the taurine‑deficient heart.
    Schaffer SW; Shimada-Takaura K; Jong CJ; Ito T; Takahashi K
    Amino Acids; 2016 Feb; 48(2):549-58. PubMed ID: 26475290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac actions of taurine as a modulator of the ion channels.
    Satoh H
    Adv Exp Med Biol; 1998; 442():121-8. PubMed ID: 9635023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taurine protects cardiac contractility in killifish, Fundulus heteroclitus, by enhancing sarcoplasmic reticular Ca
    Henry EF; MacCormack TJ
    J Comp Physiol B; 2018 Jan; 188(1):89-99. PubMed ID: 28536755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired Energy Production Contributes to Development of Failure in Taurine Deficient Heart.
    Schaffer S; Jong CJ; Shetewy A; Ramila KC; Ito T
    Adv Exp Med Biol; 2017; 975 Pt 1():435-446. PubMed ID: 28849473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application.
    Mallet RT; Olivencia-Yurvati AH; Bünger R
    Exp Biol Med (Maywood); 2018 Jan; 243(2):198-210. PubMed ID: 29154687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of antioxidant activity of taurine in diabetes.
    Schaffer SW; Azuma J; Mozaffari M
    Can J Physiol Pharmacol; 2009 Feb; 87(2):91-9. PubMed ID: 19234572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine.
    Xu YJ; Saini HK; Zhang M; Elimban V; Dhalla NS
    Cardiovasc Res; 2006 Oct; 72(1):163-74. PubMed ID: 16901476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart.
    Briede J; Stivrina M; Vigante B; Stoldere D; Duburs G
    Cell Biochem Funct; 2008; 26(2):238-45. PubMed ID: 17990288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts.
    Ramila KC; Jong CJ; Pastukh V; Ito T; Azuma J; Schaffer SW
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H232-9. PubMed ID: 25437920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation by taurine of the inotropic effect of ouabain and the content of intracellular Ca++ and taurine in the heart.
    Iwata HI; Fujimoto S
    Experientia; 1976 Dec; 32(12):1559-61. PubMed ID: 1021449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated levels of endogenous adenosine alter metabolism and enhance reduction in contractile function during low-flow ischemia: associated changes in expression of Ca(2+)-ATPase and phospholamban.
    Sommerschild HT; Lunde PK; Deindl E; Jynge P; Ilebekk A; Kirkebøen KA
    J Mol Cell Cardiol; 1999 Oct; 31(10):1897-911. PubMed ID: 10525427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of taurine and methionine on sarcoplasmic reticular Ca2+ transport and phospholipid methyltransferase activity.
    Punna S; Ballard C; Hamaguchi T; Azuma J; Schaffer S
    J Cardiovasc Pharmacol; 1994 Aug; 24(2):286-92. PubMed ID: 7526062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R; Guendouz A; Moravec J
    Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role for Taurine in Development of Oxidative Metabolism After Birth.
    Shimada-Takaura K; Takahashi K; Ito T; Schaffer S
    Adv Exp Med Biol; 2017; 975 Pt 2():1047-1057. PubMed ID: 28849521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of propionylcarnitine taurine on cardiac performance in aerobic and ischemic myocardium.
    Molaparast-Saless F; Nellis SH; Liedkte AJ
    J Mol Cell Cardiol; 1988 Jan; 20(1):63-74. PubMed ID: 3367380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.
    Zhou L; Cabrera ME; Okere IC; Sharma N; Stanley WC
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1036-46. PubMed ID: 16603683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.