These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35882840)

  • 1. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution.
    Wen BY; Wang JY; Shen TL; Zhu ZW; Guan PC; Lin JS; Peng W; Cai WW; Jin H; Xu QC; Yang ZL; Tian ZQ; Li JF
    Light Sci Appl; 2022 Jul; 11(1):235. PubMed ID: 35882840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landau-damping-induced limits to light-matter interactions in sub-10-nm planar plasmonic nanocavities.
    Assumpcao DR; Siddique RH; Choo H
    Opt Express; 2021 Nov; 29(24):39801-39810. PubMed ID: 34809336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation and emission distinguished photoluminescence enhancement in a plasmon-exciton intermediate coupling system.
    Zhang W; Gao L; Yan X; Xu H; Wei H
    Nanoscale; 2023 May; 15(17):7812-7819. PubMed ID: 37042656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding quantum emitters in plasmonic nanocavities with conformal transformation: Purcell enhancement and forces.
    Pacheco-Peña V; Navarro-Cía M
    Nanoscale; 2018 Jul; 10(28):13607-13616. PubMed ID: 29978869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove.
    Yan J; Ma C; Liu P; Wang C; Yang G
    Light Sci Appl; 2017 Jan; 6(1):e16197. PubMed ID: 30167196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit.
    Liu R; Zhou ZK; Yu YC; Zhang T; Wang H; Liu G; Wei Y; Chen H; Wang XH
    Phys Rev Lett; 2017 Jun; 118(23):237401. PubMed ID: 28644668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purcell-enhanced photoluminescence of few-layer MoS
    Kim H; Moon S; Kim J; Nam SH; Kim DH; Lee JS; Kim KH; Kang ESH; Ahn KJ; Kim T; Shin C; Suh YD
    Nanoscale; 2021 Mar; 13(10):5316-5323. PubMed ID: 33656502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities.
    Ernandes C; Lin HJ; Mortier M; Gredin P; Mivelle M; Aigouy L
    Nano Lett; 2018 Aug; 18(8):5098-5103. PubMed ID: 30001486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets.
    Hu S; Elliott E; Sánchez-Iglesias A; Huang J; Guo C; Hou Y; Kamp M; Goerlitzer ESA; Bedingfield K; de Nijs B; Peng J; Demetriadou A; Liz-Marzán LM; Baumberg JJ
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207178. PubMed ID: 36737852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime.
    Sun J; Hu H; Zheng D; Zhang D; Deng Q; Zhang S; Xu H
    ACS Nano; 2018 Oct; 12(10):10393-10402. PubMed ID: 30222317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Light-Matter Interactions in Chiral Plasmonic-Excitonic Systems Assembled on DNA Origami.
    Zhu J; Wu F; Han Z; Shang Y; Liu F; Yu H; Yu L; Li N; Ding B
    Nano Lett; 2021 Apr; 21(8):3573-3580. PubMed ID: 33830773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-Dependent Purcell Enhancement on a Two-Dimensional h-BN/WS
    Du B; Li Y; Jiang M; Zhang H; Wu L; Wen W; Liu Z; Fang Z; Yu T
    Nano Lett; 2022 Feb; 22(4):1649-1655. PubMed ID: 35107290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS
    Mawlong LPL; Paul KK; Giri PK
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33578403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.