BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35882899)

  • 1. Hypnotic enhancement of slow-wave sleep increases sleep-associated hormone secretion and reduces sympathetic predominance in healthy humans.
    Besedovsky L; Cordi M; Wißlicen L; Martínez-Albert E; Born J; Rasch B
    Commun Biol; 2022 Jul; 5(1):747. PubMed ID: 35882899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deepening sleep by hypnotic suggestion.
    Cordi MJ; Schlarb AA; Rasch B
    Sleep; 2014 Jun; 37(6):1143-52, 1152A-1152F. PubMed ID: 24882909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations.
    Grimaldi D; Papalambros NA; Reid KJ; Abbott SM; Malkani RG; Gendy M; Iwanaszko M; Braun RI; Sanchez DJ; Paller KA; Zee PC
    Sleep; 2019 May; 42(5):. PubMed ID: 30753650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-wave sleep: From the cell to the clinic.
    Léger D; Debellemaniere E; Rabat A; Bayon V; Benchenane K; Chennaoui M
    Sleep Med Rev; 2018 Oct; 41():113-132. PubMed ID: 29490885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HYPNOTIC SUGGESTIONS GIVEN BEFORE NIGHTTIME SLEEP EXTEND SLOW-WAVE SLEEP AS COMPARED TO A CONTROL TEXT IN HIGHLY HYPNOTIZABLE SUBJECTS.
    Cordi MJ; Rossier L; Rasch B
    Int J Clin Exp Hypn; 2020; 68(1):105-129. PubMed ID: 31914371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective slow-wave sleep suppression affects glucose tolerance and melatonin secretion. The role of sleep architecture.
    Ukraintseva YV; Liaukovich KM; Saltykov KA; Belov DA; Nizhnik АN
    Sleep Med; 2020 Mar; 67():171-183. PubMed ID: 31935619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow-wave sleep and androgens: selective slow-wave sleep suppression affects testosterone and 17α-hydroxyprogesterone secretion.
    Ukraintseva YV; Liaukovich KM; Polishchuk АA; Martynova ОV; Belov DA; Simenel ES; Meira E Cruz М; Nizhnik АN
    Sleep Med; 2018 Aug; 48():117-126. PubMed ID: 29894840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving sleep and cognition by hypnotic suggestion in the elderly.
    Cordi MJ; Hirsiger S; Mérillat S; Rasch B
    Neuropsychologia; 2015 Mar; 69():176-82. PubMed ID: 25660206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune-supportive function.
    Besedovsky L; Ngo HV; Dimitrov S; Gassenmaier C; Lehmann R; Born J
    Nat Commun; 2017 Dec; 8(1):1984. PubMed ID: 29215045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility, efficacy, and functional relevance of automated auditory closed-loop suppression of slow-wave sleep in humans.
    Fehér KD; Omlin X; Tarokh L; Schneider CL; Morishima Y; Züst MA; Wunderlin M; Koenig T; Hertenstein E; Ellenberger B; Ruch S; Schmidig F; Mikutta C; Trinca E; Senn W; Feige B; Klöppel S; Nissen C
    J Sleep Res; 2023 Aug; 32(4):e13846. PubMed ID: 36806335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of zopiclone on slow wave sleep and spontaneous K-complexes for normal healthy young adults.
    Hayashida N; Nakazawa Y; Sakamoto T; Uchimura N; Kuroda K; Hashizume Y; Tsuchiya S; Tsutsumi Y
    Jpn J Psychiatry Neurol; 1993 Dec; 47(4):893-9. PubMed ID: 8201800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired vocal communication, sleep-related discharges, and transient alteration of slow-wave sleep in developing mice lacking the GluN2A subunit of N-methyl-d-aspartate receptors.
    Salmi M; Del Gallo F; Minlebaev M; Zakharov A; Pauly V; Perron P; Pons-Bennaceur A; Corby-Pellegrino S; Aniksztejn L; Lenck-Santini PP; Epsztein J; Khazipov R; Burnashev N; Bertini G; Szepetowski P
    Epilepsia; 2019 Jul; 60(7):1424-1437. PubMed ID: 31158310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of slow wave sleep in the development of dementia and its potential for preventative interventions.
    Wunderlin M; Züst MA; Fehér KD; Klöppel S; Nissen C
    Psychiatry Res Neuroimaging; 2020 Dec; 306():111178. PubMed ID: 32919869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow wave synchronization and sleep state transitions.
    Guo D; Thomas RJ; Liu Y; Shea SA; Lu J; Peng CK
    Sci Rep; 2022 May; 12(1):7467. PubMed ID: 35523989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management.
    Dijk DJ
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():22-8. PubMed ID: 20509829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone (GH) and cortisol.
    Born J; Muth S; Fehm HL
    Psychoneuroendocrinology; 1988; 13(3):233-43. PubMed ID: 3406323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep.
    Jerath R; Harden K; Crawford M; Barnes VA; Jensen M
    Sleep Med; 2014 Mar; 15(3):279-88. PubMed ID: 24548599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation.
    Fehér KD; Wunderlin M; Maier JG; Hertenstein E; Schneider CL; Mikutta C; Züst MA; Klöppel S; Nissen C
    Sleep Med Rev; 2021 Aug; 58():101438. PubMed ID: 33582581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-immune interactions in sleep.
    Marshall L; Born J
    Int Rev Neurobiol; 2002; 52():93-131. PubMed ID: 12498102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Niethard N; Brodt S; Born J
    J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.