These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35883552)

  • 1. Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition.
    Huang G; Luo W; Zhang G; Zheng P; Yao Y; Lyu J; Liu Y; Wei DQ
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep6mAPred: A CNN and Bi-LSTM-based deep learning method for predicting DNA N6-methyladenosine sites across plant species.
    Tang X; Zheng P; Li X; Wu H; Wei DQ; Liu Y; Huang G
    Methods; 2022 Aug; 204():142-150. PubMed ID: 35477057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LangMoDHS: A deep learning language model for predicting DNase I hypersensitive sites in mouse genome.
    Tang X; Zheng P; Liu Y; Yao Y; Huang G
    Math Biosci Eng; 2023 Jan; 20(1):1037-1057. PubMed ID: 36650801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepLBCEPred: A Bi-LSTM and multi-scale CNN-based deep learning method for predicting linear B-cell epitopes.
    Qi Y; Zheng P; Huang G
    Front Microbiol; 2023; 14():1117027. PubMed ID: 36910218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iEnhancer-DCLA: using the original sequence to identify enhancers and their strength based on a deep learning framework.
    Liao M; Zhao JP; Tian J; Zheng CH
    BMC Bioinformatics; 2022 Nov; 23(1):480. PubMed ID: 36376800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.
    Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV
    BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning framework for enhancer prediction using word embedding and sequence generation.
    Geng Q; Yang R; Zhang L
    Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences.
    Gao Y; Chen Y; Feng H; Zhang Y; Yue Z
    Interdiscip Sci; 2022 Jun; 14(2):555-565. PubMed ID: 35190950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information.
    Luo H; Li Y; Liu H; Ding P; Yu Y; Luo L
    Comput Biol Chem; 2023 Aug; 105():107905. PubMed ID: 37348298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ES-ARCNN: Predicting enhancer strength by using data augmentation and residual convolutional neural network.
    Zhang TH; Flores M; Huang Y
    Anal Biochem; 2021 Apr; 618():114120. PubMed ID: 33535061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks.
    Sun C; Zhang N; Yu P; Wu X; Li Q; Li T; Li H; Xiao X; Shalmani A; Li L; Che D; Wang X; Zhang P; Chen Z; Liu T; Zhao J; Hua J; Liao M
    Mol Omics; 2020 Oct; 16(5):455-464. PubMed ID: 32568326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition.
    Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for predicting respiratory rate from biosignals.
    Kumar AK; Ritam M; Han L; Guo S; Chandra R
    Comput Biol Med; 2022 May; 144():105338. PubMed ID: 35248805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near infrared spectroscopy quantification based on Bi-LSTM and transfer learning for new scenarios.
    Tan A; Wang Y; Zhao Y; Wang B; Li X; Wang AX
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121759. PubMed ID: 35985223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning based two-layer predictor to identify enhancers and their strength.
    Zhu D; Yang W; Xu D; Li H; Zhao Y; Li D
    Methods; 2023 Mar; 211():23-30. PubMed ID: 36740001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models.
    Tang B; Jiang D; Chen Q; Wang X; Yan J; Shen Y
    AMIA Annu Symp Proc; 2019; 2019():857-863. PubMed ID: 32308882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos.
    Ullah W; Ullah A; Hussain T; Khan ZA; Baik SW
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.