BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 358838)

  • 1. Double luminal and vascular perfusion of chicken jejunum: studies on 3-O-methyl-D-glucose absorption.
    Roig T; Vinardell MP; Ruberté J; Fernández E
    Pflugers Arch; 1993 Dec; 425(5-6):365-72. PubMed ID: 8134252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na dependence of monosaccharide absorption in isolated rabbit small intestine, perfused through lumen and vascular bed.
    Mothes T; Remke H; Müller F
    Pflugers Arch; 1981 Nov; 392(1):13-6. PubMed ID: 7322829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenic responses induced by neutral amino acids in endoderm cells from Xenopus embryo.
    Bergman C; Bergman J
    J Physiol; 1981 Sep; 318():259-78. PubMed ID: 7320891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of current-voltage relationships for "active" ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.
    Hansen UP; Gradmann D; Sanders D; Slayman CL
    J Membr Biol; 1981; 63(3):165-90. PubMed ID: 7310856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine transport across the small intestine. Stimulating and inhibitory effects of neutral amino acids.
    Munck BG
    J Membr Biol; 1980 Mar; 53(1):45-53. PubMed ID: 6768890
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetics of sodium D-glucose cotransport in bovine intestinal brush border vesicles.
    Kaunitz JD; Wright EM
    J Membr Biol; 1984; 79(1):41-51. PubMed ID: 6737463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding energy, conformational change, and the mechanism of transmembrane solute movements.
    Scarborough GA
    Microbiol Rev; 1985 Sep; 49(3):214-31. PubMed ID: 2413342
    [No Abstract]   [Full Text] [Related]  

  • 8. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis.
    Wierzbicki W; Berteloot A; Roy G
    J Membr Biol; 1990 Jul; 117(1):11-27. PubMed ID: 2402006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport.
    Kimmich GA
    J Membr Biol; 1990 Mar; 114(1):1-27. PubMed ID: 2181143
    [No Abstract]   [Full Text] [Related]  

  • 10. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradient coupling in isolated intestinal cells.
    Kimmich GA
    Fed Proc; 1981 Aug; 40(10):2474-9. PubMed ID: 7021186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0.
    Kimmich GA; Randles J
    Biochim Biophys Acta; 1980 Mar; 596(3):439-44. PubMed ID: 7362824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of sodium-coupled active transport mechanisms in invertebrate epithelia.
    Gerencser GA; Stevens BR
    Am J Physiol; 1989 Sep; 257(3 Pt 2):R461-72. PubMed ID: 2675637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potentials and the energetics of intestinal Na+-dependent transport systems.
    Kimmich GA; Carter-Su C
    Am J Physiol; 1978 Sep; 235(3):C73-81. PubMed ID: 358838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal transport: studies with isolated epithelial cells.
    Kimmich GA
    Environ Health Perspect; 1979 Dec; 33():37-44. PubMed ID: 540624
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.