These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 35884244)

  • 41. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis.
    Rebelo P; Costa-Rama E; Seguro I; Pacheco JG; Nouws HPA; Cordeiro MNDS; Delerue-Matos C
    Biosens Bioelectron; 2021 Jan; 172():112719. PubMed ID: 33166805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers.
    Qasim S; Hsu SY; Rossi E; Salahshoor Z; Lin CH; Parada LP; Fidalgo M
    Mikrochim Acta; 2022 Apr; 189(5):174. PubMed ID: 35366715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecularly Imprinted Polymer as an Antibody Substitution in Pseudo-immunoassays for Chemical Contaminants in Food and Environmental Samples.
    Chen C; Luo J; Li C; Ma M; Yu W; Shen J; Wang Z
    J Agric Food Chem; 2018 Mar; 66(11):2561-2571. PubMed ID: 29461812
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The rational development of molecularly imprinted polymer-based sensors for protein detection.
    Whitcombe MJ; Chianella I; Larcombe L; Piletsky SA; Noble J; Porter R; Horgan A
    Chem Soc Rev; 2011 Mar; 40(3):1547-71. PubMed ID: 21132204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An optical reflected device using a molecularly imprinted polymer film sensor.
    Wu N; Feng L; Tan Y; Hu J
    Anal Chim Acta; 2009 Oct; 653(1):103-8. PubMed ID: 19800481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
    Xu S; Lu H
    Biosens Bioelectron; 2016 Nov; 85():950-956. PubMed ID: 27315521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecularly Imprinted Polymer-Based Sensors for Protein Detection.
    Akgönüllü S; Kılıç S; Esen C; Denizli A
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.
    Ayankojo AG; Tretjakov A; Reut J; Boroznjak R; Öpik A; Rappich J; Furchner A; Hinrichs K; Syritski V
    Anal Chem; 2016 Jan; 88(2):1476-84. PubMed ID: 26704414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine.
    Zhu X; Zeng Y; Zhang Z; Yang Y; Zhai Y; Wang H; Liu L; Hu J; Li L
    Biosens Bioelectron; 2018 Jun; 108():38-45. PubMed ID: 29499557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Employing molecularly imprinted polymers in the development of electroanalytical methodologies for antibiotic determination.
    Benachio I; Lobato A; Gonçalves LM
    J Mol Recognit; 2021 Mar; 34(3):e2878. PubMed ID: 33022110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.
    Bates F; Cela-Pérez MC; Karim K; Piletsky S; López-Vilariño JM
    Macromol Biosci; 2016 Aug; 16(8):1170-4. PubMed ID: 27076379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles.
    Peeters MM; van Grinsven B; Foster CW; Cleij TJ; Banks CE
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27128891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils.
    Turiel E; Martín-Esteban A; Tadeo JL
    J Chromatogr A; 2007 Nov; 1172(2):97-104. PubMed ID: 17961582
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk.
    García Mayor MA; Paniagua González G; Garcinuño Martínez RM; Fernández Hernando P; Durand Alegría JS
    Food Chem; 2017 Apr; 221():721-728. PubMed ID: 27979264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifunctional Molecularly Imprinted Receptor-Based Polymeric Membrane Potentiometric Sensor for Sensitive Detection of Bisphenol A.
    Wang C; Qi L; Liang R; Qin W
    Anal Chem; 2022 Jun; 94(22):7795-7803. PubMed ID: 35593704
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Technical Challenges of Molecular-Imprinting-Based Optical Sensors for Environmental Pollutants.
    Arabi M; Chen L
    Langmuir; 2022 May; 38(19):5963-5967. PubMed ID: 35511581
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants.
    Liu Y; Lian Z; Li F; Majid A; Wang J
    Mar Pollut Bull; 2021 Aug; 169():112541. PubMed ID: 34052587
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine.
    Chen J; Huang H; Zeng Y; Tang H; Li L
    Biosens Bioelectron; 2015 Mar; 65():366-74. PubMed ID: 25461183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultratrace Detection of Histamine Using a Molecularly-Imprinted Polymer-Based Voltammetric Sensor.
    Akhoundian M; Rüter A; Shinde S
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335573
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Norepinephrine as new functional monomer for molecular imprinting: An applicative study for the optical sensing of cardiac biomarkers.
    Baldoneschi V; Palladino P; Banchini M; Minunni M; Scarano S
    Biosens Bioelectron; 2020 Jun; 157():112161. PubMed ID: 32250934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.