These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 35884254)
1. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material. Chmayssem A; Tanase CE; Verplanck N; Gougis M; Mourier V; Zebda A; Ghaemmaghami AM; Mailley P Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884254 [TBL] [Abstract][Full Text] [Related]
2. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639 [TBL] [Abstract][Full Text] [Related]
3. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement. Pradhan R; Raisa SA; Kumar P; Kalkal A; Kumar N; Packirisamy G; Manhas S Biomed Microdevices; 2021 Jan; 23(1):9. PubMed ID: 33449205 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells. Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609 [TBL] [Abstract][Full Text] [Related]
5. Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems. Rapier CE; Jagadeesan S; Vatine GD; Ben-Yoav H Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194604 [TBL] [Abstract][Full Text] [Related]
6. In-air EIS sensor for in situ and real-time monitoring of in vitro epithelial cells under air-exposure. Noh S; Kim H Lab Chip; 2020 May; 20(10):1751-1761. PubMed ID: 32347229 [TBL] [Abstract][Full Text] [Related]
7. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity and Validation of Porous Membrane Electrical Cell Substrate Impedance Spectroscopy (PM-ECIS) for Measuring Endothelial Barrier Properties. Ugodnikov A; Chebotarev O; Persson H; Simmons CA ACS Biomater Sci Eng; 2024 Aug; 10(8):5327-5335. PubMed ID: 38943620 [TBL] [Abstract][Full Text] [Related]
9. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology. Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996 [TBL] [Abstract][Full Text] [Related]
12. Choosing the right electrode representation for modeling real bioelectronic interfaces: a comprehensive guide. Opančar A; Głowacki ED; Đerek V J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39094614 [No Abstract] [Full Text] [Related]
13. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation. Wang A; Jung D; Park J; Junek G; Wang H IEEE Trans Nanobioscience; 2019 Apr; 18(2):248-252. PubMed ID: 30892229 [TBL] [Abstract][Full Text] [Related]
14. Chronic impedance spectroscopy of an endovascular stent-electrode array. Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157 [TBL] [Abstract][Full Text] [Related]
15. Development of stable and reproducible biosensors based on electrochemical impedance spectroscopy: three-electrode versus two-electrode setup. Ianeselli L; Grenci G; Callegari C; Tormen M; Casalis L Biosens Bioelectron; 2014 May; 55():1-6. PubMed ID: 24355458 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins. Alsabbagh K; Hornung T; Voigt A; Sadir S; Rajabi T; Länge K Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33805676 [TBL] [Abstract][Full Text] [Related]
17. Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes. Nasrollaholhosseini SH; Herrera DS; Besio WG Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2426-2429. PubMed ID: 29060388 [TBL] [Abstract][Full Text] [Related]
18. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells. Panklang N; Techaumnat B; Tanthanuch N; Chotivanich K; Horprathum M; Nakano M Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794040 [TBL] [Abstract][Full Text] [Related]