These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35885078)

  • 1. Hydrodynamic Behavior of Self-Propelled Particles in a Simple Shear Flow.
    Qi T; Lin J; Ouyang Z
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Settling mode of a bottom-heavy squirmer in a narrow vessel.
    Tingting Q; Jianzhong L; Zhenyu O; Jue Z
    Soft Matter; 2023 Jan; 19(4):652-669. PubMed ID: 36597923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic interaction of microswimmers near a wall.
    Li GJ; Ardekani AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lattice Boltzmann model for squirmers.
    Kuron M; Stärk P; Burkard C; de Graaf J; Holm C
    J Chem Phys; 2019 Apr; 150(14):144110. PubMed ID: 30981238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axisymmetric spheroidal squirmers and self-diffusiophoretic particles.
    Pöhnl R; Popescu MN; Uspal WE
    J Phys Condens Matter; 2020 Apr; 32(16):164001. PubMed ID: 31801127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The motion of micro-swimmers over a cavity in a micro-channel.
    Hu X; Chen W; Lin J; Nie D; Zhu Z; Lin P
    Soft Matter; 2024 Mar; 20(12):2789-2803. PubMed ID: 38445957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel.
    Guan G; Lin J; Nie D
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model.
    Shen Z; Würger A; Lintuvuori JS
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions.
    Ishimoto K
    Phys Rev E; 2017 Oct; 96(4-1):043103. PubMed ID: 29347500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Rotational Motion of Spherical Squirmer in Polymer Solutions.
    Qi K; Westphal E; Gompper G; Winkler RG
    Phys Rev Lett; 2020 Feb; 124(6):068001. PubMed ID: 32109107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid.
    Li GJ; Karimi A; Ardekani AM
    Rheol Acta; 2014 Dec; 53(12):911-926. PubMed ID: 26855446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces.
    Kuron M; Stärk P; Holm C; de Graaf J
    Soft Matter; 2019 Jul; 15(29):5908-5920. PubMed ID: 31282522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squirmer hydrodynamics near a periodic surface topography.
    Ishimoto K; Gaffney EA; Smith DJ
    Front Cell Dev Biol; 2023; 11():1123446. PubMed ID: 37123410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.
    Lintuvuori JS; Würger A; Stratford K
    Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective squirmer models for self-phoretic chemically active spherical colloids.
    Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S
    Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct-forcing fictitious domain method for simulating non-Brownian active particles.
    Lin Z; Gao T
    Phys Rev E; 2019 Jul; 100(1-1):013304. PubMed ID: 31499789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.