These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35885135)

  • 1. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients.
    Ding Q; Long X; Mao S
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Level Finite Element Iterative Algorithm Based on Stabilized Method for the Stationary Incompressible Magnetohydrodynamics.
    Tang Q; Hou M; Xiao Y; Yin L
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal Convergence Analysis of Two-Level Nonconforming Finite Element Iterative Methods for 2D/3D MHD Equations.
    Su H; Xu J; Feng X
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics.
    Dumbser M; Balsara DS; Tavelli M; Fambri F
    Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem.
    He G; Zhang Y
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions.
    Zhou Y; Luo Z; Teng F
    J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error Analysis of a PFEM Based on the Euler Semi-Implicit Scheme for the Unsteady MHD Equations.
    Shi K; Su H; Feng X
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed Finite Element Formulation for Navier-Stokes Equations for Magnetic Effects on Biomagnetic Fluid in a Rectangular Channel.
    Kasiman EH; Kueh ABH; Mohd Yassin AY; Amin NS; Amran M; Fediuk R; Kotov EV; Murali G
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations.
    Mu L; Feng X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model.
    Dubey A; B V; Bég OA; Gorla RSR
    Microvasc Res; 2021 Nov; 138():104221. PubMed ID: 34271062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilized hybrid discontinuous Galerkin finite element method for the cardiac monodomain equation.
    Rocha BM; Dos Santos RW; Igreja I; Loula AFD
    Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3341. PubMed ID: 32293783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform Error Estimates of the Finite Element Method for the Navier-Stokes Equations in R2 with
    Ren S; Wang K; Feng X
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence-Conforming Velocity and Vorticity Approximations for Incompressible Fluids Obtained with Minimal Facet Coupling.
    Gopalakrishnan J; Kogler L; Lederer PL; Schöberl J
    J Sci Comput; 2023; 95(3):91. PubMed ID: 37187467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.
    Barrenechea GR; Burman E; Karakatsani F
    Numer Math (Heidelb); 2017; 135(2):521-545. PubMed ID: 28615743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations.
    Xing X; Liu D
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.