These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35885169)

  • 1. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform Error Estimates of the Finite Element Method for the Navier-Stokes Equations in R2 with
    Ren S; Wang K; Feng X
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations.
    Mu L; Feng X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem.
    He G; Zhang Y
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations.
    Liu J; Liu D
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME.
    Carasso AS
    Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations.
    Xing X; Liu D
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients.
    Ding Q; Long X; Mao S
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions.
    Zhou Y; Luo Z; Teng F
    J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained Reversible System for Navier-Stokes Turbulence.
    Jaccod A; Chibbaro S
    Phys Rev Lett; 2021 Nov; 127(19):194501. PubMed ID: 34797128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.
    Thamareerat N; Luadsong A; Aschariyaphotha N
    Springerplus; 2016; 5():417. PubMed ID: 27099822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.
    Rajaraman PK; Manteuffel TA; Belohlavek M; Heys JJ
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26991079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.
    Chen X; Fried E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.