BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35885891)

  • 1. Development of Transformation for Genome Editing of an Emerging Model Organism.
    Yamamoto Y; Gerbi SA
    Genes (Basel); 2022 Jun; 13(7):. PubMed ID: 35885891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory Maintenance of the Lower Dipteran Fly Bradysia (Sciara) coprophila: A New/Old Emerging Model Organism.
    Gerbi SA
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38709079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-random chromosome segregation and chromosome eliminations in the fly Bradysia (Sciara).
    Gerbi SA
    Chromosome Res; 2022 Sep; 30(2-3):273-288. PubMed ID: 35793056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High contiguity de novo genome assembly and DNA modification analyses for the fungus fly, Sciara coprophila, using single-molecule sequencing.
    Urban JM; Foulk MS; Bliss JE; Coleman CM; Lu N; Mazloom R; Brown SJ; Spradling AC; Gerbi SA
    BMC Genomics; 2021 Sep; 22(1):643. PubMed ID: 34488624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome size and determination of DNA content of the X chromosomes, autosomes, and germ line-limited chromosomes of Sciara coprophila.
    Rasch EM
    J Morphol; 2006 Nov; 267(11):1316-25. PubMed ID: 17051543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bradysia (Sciara) coprophila larvae up-regulate DNA repair pathways and down-regulate developmental regulators in response to ionizing radiation.
    Urban JM; Bateman JR; Garza KR; Borden J; Jain J; Brown A; Thach BJ; Bliss JE; Gerbi SA
    Genetics; 2024 Mar; 226(3):. PubMed ID: 38066617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and cytological characterization of repetitive DNA sequences from the centromeric heterochromatin of Sciara coprophila.
    Escribá MC; Greciano PG; Méndez-Lago M; de Pablos B; Trifonov VA; Ferguson-Smith MA; Goday C; Villasante A
    Chromosoma; 2011 Aug; 120(4):387-97. PubMed ID: 21533987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development.
    Martín I; Ruiz MF; Sánchez L
    BMC Dev Biol; 2011 Mar; 11():19. PubMed ID: 21406087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone H3 phosphorylation and non-disjunction of the maternal X chromosome during male meiosis in sciarid flies.
    Escribá MC; Giardini MC; Goday C
    J Cell Sci; 2011 May; 124(Pt 10):1715-25. PubMed ID: 21511731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spermatogenesis in Sciara coprophila. I. Chromosome orientation on the monopolar spindle of meiosis I.
    Abbott AG; Hess JE; Gerbi SA
    Chromosoma; 1981; 83(1):1-18. PubMed ID: 7261717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies.
    Goday C; Ruiz MF
    J Cell Sci; 2002 Dec; 115(Pt 24):4765-75. PubMed ID: 12432065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revision of the types of male Sciaridae (Diptera) described from Australia by F.A.A. Skuse.
    Broadley A; Kauschke E; Mohrig W
    Zootaxa; 2016 Nov; 4193(3):zootaxa.4193.3.1. PubMed ID: 27988688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development.
    Greciano PG; Goday C
    J Cell Sci; 2006 Nov; 119(Pt 22):4667-77. PubMed ID: 17062638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-rich germline-restricted chromosomes in black-winged fungus gnats evolved through hybridization.
    Hodson CN; Jaron KS; Gerbi S; Ross L
    PLoS Biol; 2022 Feb; 20(2):e3001559. PubMed ID: 35213540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meiosis in Sciara coprophila: structure of the spindle and chromosome behavior during the first meiotic division.
    Kubai DF
    J Cell Biol; 1982 Jun; 93(3):655-69. PubMed ID: 7118997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonrandom chromosome arrangements in germ line nuclei of Sciara coprophila males: the basis for nonrandom chromosome segregation on the meiosis I spindle.
    Kubai DF
    J Cell Biol; 1987 Dec; 105(6 Pt 1):2433-46. PubMed ID: 3693389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation.
    Ruiz MF; Esteban MR; Doñoro C; Goday C; Sánchez L
    Genetics; 2000 Dec; 156(4):1853-65. PubMed ID: 11102379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aliens in the CYPome of the black fungus gnat, Bradysia coprophila.
    Feyereisen R; Urban JM; Nelson DR
    Insect Biochem Mol Biol; 2023 Aug; 159():103965. PubMed ID: 37271423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal DNA of fly Sciara coprophila has a very small and homogeneous repeat unit.
    Renkawitz R; Gerbi SA; Glätzer KH
    Mol Gen Genet; 1979 May; 173(1):1-13. PubMed ID: 288964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incomplete sister chromatid separation is the mechanism of programmed chromosome elimination during early Sciara coprophila embryogenesis.
    de Saint Phalle B; Sullivan W
    Development; 1996 Dec; 122(12):3775-84. PubMed ID: 9012499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.