These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 35886280)
1. Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study. Afrane S; Ampah JD; Agyekum EB; Amoh PO; Yusuf AA; Fattah IMR; Agbozo E; Elgamli E; Shouran M; Mao G; Kamel S Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886280 [TBL] [Abstract][Full Text] [Related]
2. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Yap HY; Nixon JD Waste Manag; 2015 Dec; 46():265-77. PubMed ID: 26275797 [TBL] [Abstract][Full Text] [Related]
3. Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Onüt S; Soner S Waste Manag; 2008; 28(9):1552-9. PubMed ID: 17768038 [TBL] [Abstract][Full Text] [Related]
4. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. Aghajani Mir M; Taherei Ghazvinei P; Sulaiman NM; Basri NE; Saheri S; Mahmood NZ; Jahan A; Begum RA; Aghamohammadi N J Environ Manage; 2016 Jan; 166():109-15. PubMed ID: 26496840 [TBL] [Abstract][Full Text] [Related]
5. To dream or not to dream in Havana: multi-criteria decision-making for material and energy recovery from municipal solid wastes. Alfonso-Cardero A; Pagés-Díaz J; Kalogirou E; Psomopoulos CS; Lorenzo-Llanes J Environ Sci Pollut Res Int; 2023 Jan; 30(4):8601-8616. PubMed ID: 34767162 [TBL] [Abstract][Full Text] [Related]
6. Decision-theoretic rough set model and spatial analysis-based waste-to-energy incineration plant site selection: a case study in first-tier cities of China. Zhang X; Kang J; Che Y; Cao X; Li P Environ Sci Pollut Res Int; 2023 Nov; 30(54):115699-115720. PubMed ID: 37889411 [TBL] [Abstract][Full Text] [Related]
7. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Hadidi LA; Omer MM Waste Manag; 2017 Jan; 59():90-101. PubMed ID: 27773548 [TBL] [Abstract][Full Text] [Related]
8. Selection of plastic solid waste treatment technology based on cumulative prospect theory and fuzzy DEMATEL. Mao Q; Chen J; Lv J; Guo M; Xie P Environ Sci Pollut Res Int; 2023 Mar; 30(14):41505-41536. PubMed ID: 36633741 [TBL] [Abstract][Full Text] [Related]
9. An Integrated Fuzzy AHP and Fuzzy TOPSIS Approach to Assess Sustainable Urban Development in an Emerging Economy. Dang VT; Wang J; Van-Thac Dang W Int J Environ Res Public Health; 2019 Aug; 16(16):. PubMed ID: 31412685 [TBL] [Abstract][Full Text] [Related]
10. Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP. De Feo G; De Gisi S Waste Manag; 2010 Nov; 30(11):2370-82. PubMed ID: 20444589 [TBL] [Abstract][Full Text] [Related]
11. Tackling municipal solid waste crisis in India: Insights into cutting-edge technologies and risk assessment. Singh M; Singh M; Singh SK Sci Total Environ; 2024 Mar; 917():170453. PubMed ID: 38296084 [TBL] [Abstract][Full Text] [Related]
12. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Fernández-González JM; Grindlay AL; Serrano-Bernardo F; Rodríguez-Rojas MI; Zamorano M Waste Manag; 2017 Sep; 67():360-374. PubMed ID: 28501263 [TBL] [Abstract][Full Text] [Related]
13. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. Rasheed T; Anwar MT; Ahmad N; Sher F; Khan SU; Ahmad A; Khan R; Wazeer I J Environ Manage; 2021 Jun; 287():112257. PubMed ID: 33690013 [TBL] [Abstract][Full Text] [Related]
14. Global trends of waste-to-energy (WtE) technologies in carbon neutral perspective: Bibliometric analysis. Cui W; Wei Y; Ji N Ecotoxicol Environ Saf; 2024 Jan; 270():115913. PubMed ID: 38198897 [TBL] [Abstract][Full Text] [Related]
15. Harnessing waste-to-energy potential in developing countries: a case study of rural Ghana. Opoku L; Gyimah AG; Addai B Environ Sci Pollut Res Int; 2022 Aug; 29(38):58011-58021. PubMed ID: 35362881 [TBL] [Abstract][Full Text] [Related]
16. Application of q-rung orthopair fuzzy based SWARA-COPRAS model for municipal waste treatment technology selection. Soni A; Das PK; Kumar S Environ Sci Pollut Res Int; 2023 Aug; 30(37):88111-88131. PubMed ID: 37434060 [TBL] [Abstract][Full Text] [Related]
17. Evaluating critical barriers and pathways to implementation of e-waste formalization management systems in Ghana: a hybrid BWM and fuzzy TOPSIS approach. Chen D; Faibil D; Agyemang M Environ Sci Pollut Res Int; 2020 Dec; 27(35):44561-44584. PubMed ID: 32772292 [TBL] [Abstract][Full Text] [Related]
18. Fuzzy multicriteria disposal method and site selection for municipal solid waste. Ekmekçioğlu M; Kaya T; Kahraman C Waste Manag; 2010; 30(8-9):1729-36. PubMed ID: 20303733 [TBL] [Abstract][Full Text] [Related]
19. Waste to energy spatial suitability analysis using hybrid multi-criteria machine learning approach. Al-Ruzouq R; Abdallah M; Shanableh A; Alani S; Obaid L; Gibril MBA Environ Sci Pollut Res Int; 2022 Jan; 29(2):2613-2628. PubMed ID: 34374020 [TBL] [Abstract][Full Text] [Related]
20. A review on technological options of waste to energy for effective management of municipal solid waste. Kumar A; Samadder SR Waste Manag; 2017 Nov; 69():407-422. PubMed ID: 28886975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]