These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 35886812)
61. The first evidence of the Indian meal moth (Plodia interpunctella) interaction with the silicone moulds. Dąbrowska A Chemosphere; 2022 Jul; 299():134451. PubMed ID: 35364077 [TBL] [Abstract][Full Text] [Related]
62. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth. Schesser JH Appl Environ Microbiol; 1976 Oct; 32(4):508-10. PubMed ID: 984828 [TBL] [Abstract][Full Text] [Related]
63. Life tables of Habrobracon hebetor (Hymenoptera: Braconidae) parasitizing Anagasta kuehniella and Plodia interpunctella (Lepidoptera: Pyralidae): effect of host density. Eliopoulos PA; Stathas GJ J Econ Entomol; 2008 Jun; 101(3):982-8. PubMed ID: 18613603 [TBL] [Abstract][Full Text] [Related]
64. Heat Tolerance Induction of the Indian Meal Moth (Lepidoptera: Pyralidae) Is Accompanied by Upregulation of Heat Shock Proteins and Polyols. Kim M; Lee S; Chun YS; Na J; Kwon H; Kim W; Kim Y Environ Entomol; 2017 Aug; 46(4):1005-1011. PubMed ID: 28881949 [TBL] [Abstract][Full Text] [Related]
65. Biology of Nosema plodiae sp. n., a microsporidian pathogen of the Indian-meal moth, Plodia interpunctella (Hübner), (Lepidoptera:Phycitidae). Kellen WR; Lindegren JE J Invertebr Pathol; 1968 Jun; 11(1):104-11. PubMed ID: 5654768 [No Abstract] [Full Text] [Related]
66. Comparative mortality of diapausing and nondiapausing larvae of Plodia interpunctella (Lepidoptera: Pyralidae) exposed to monoterpenoids and low pressure. Mbata GN; Pascual-Villalobos MJ; Payton ME J Econ Entomol; 2012 Apr; 105(2):679-85. PubMed ID: 22606841 [TBL] [Abstract][Full Text] [Related]
67. Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Ni WL; Li ZH; Chen HJ; Wan FH; Qu WW; Zhang Z; Kriticos DJ Bull Entomol Res; 2012 Apr; 102(2):173-83. PubMed ID: 22008216 [TBL] [Abstract][Full Text] [Related]
68. Host-pathogen relationships of two previously undescribed microsporidia from the Indian-meal moth, Plodia interpunctella (Hübner), (Lepidoptera: Phycitidae). Kellen WR; Lindegren JE J Invertebr Pathol; 1969 Nov; 14(3):328-35. PubMed ID: 4983937 [No Abstract] [Full Text] [Related]
69. [Nutrition of a lepidopteran caterpillar Plodia interpunctella Hubner (Lepidoptera, Pyralidae) on a chemically defined medium]. Morère JL Arch Int Physiol Biochim; 1974 Oct; 82(4):625-30. PubMed ID: 4141411 [No Abstract] [Full Text] [Related]
70. Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX. Aljaryian R; Kumar L; Taylor S Pest Manag Sci; 2016 Oct; 72(10):1989-2000. PubMed ID: 26833543 [TBL] [Abstract][Full Text] [Related]
71. The current and future potential geographic range of West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae). Fu L; Li ZH; Huang GS; Wu XX; Ni WL; Qü WW Insect Sci; 2014 Apr; 21(2):234-44. PubMed ID: 23956160 [TBL] [Abstract][Full Text] [Related]
72. Ionizing irradiation of adults of Angoumois grain moth (Lepidoptera: Gelechiidae) and Indianmeal moth (Lepidoptera: Pyralidae) to prevent reproduction, and implications for a generic irradiation treatment for insects. Hallman GJ; Phillips TW J Econ Entomol; 2008 Aug; 101(4):1051-6. PubMed ID: 18767708 [TBL] [Abstract][Full Text] [Related]
73. [Applying Biomod2 for modeling of species suitable habitats:a case study of Paeonia lactiflora in China]. Bi YQ; Zhang MX; Chen Y; Wang AX; Li MH Zhongguo Zhong Yao Za Zhi; 2022 Jan; 47(2):376-384. PubMed ID: 35178979 [TBL] [Abstract][Full Text] [Related]
74. Using Long-term Capture Data to Predict Gerken AR; Campbell JF Insects; 2019 Mar; 10(4):. PubMed ID: 30935058 [TBL] [Abstract][Full Text] [Related]
75. The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects. Liu QN; Chai XY; Bian DD; Zhou CL; Tang BP Genome; 2016 Jan; 59(1):37-49. PubMed ID: 26701149 [TBL] [Abstract][Full Text] [Related]
76. Determining host suitability of pecan for stored-product insects. Shufran AA; Mulder PG; Payton ME; Shufran KA J Econ Entomol; 2013 Apr; 106(2):1071-4. PubMed ID: 23786103 [TBL] [Abstract][Full Text] [Related]
77. Predicting suitable distribution areas of Zhang WP; Hu YY; Li ZH; Feng XP; Li DW Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2514-2524. PubMed ID: 34313070 [TBL] [Abstract][Full Text] [Related]
78. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat. Liu SS; Arthur FH; VanGundy D; Phillips TW Insects; 2016 Jun; 7(2):. PubMed ID: 27322331 [TBL] [Abstract][Full Text] [Related]
79. Impact of Peanut Depth and Container Size on the Parasitism of Diapausing and Nondiapausing Larvae of Indian Meal Moth (Lepidoptera: Pyralidae) by Habrobracon hebetor (Hymenoptera: Braconidae). Warsi S; Mbata GN Environ Entomol; 2018 Oct; 47(5):1226-1232. PubMed ID: 29982322 [TBL] [Abstract][Full Text] [Related]
80. Projecting the current and future potential global distribution of Hyphantria cunea (Lepidoptera: Arctiidae) using CLIMEX. Ge X; He S; Zhu C; Wang T; Xu Z; Zong S Pest Manag Sci; 2019 Jan; 75(1):160-169. PubMed ID: 29797397 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]