BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35887097)

  • 1. Maximizing the Performance of Similarity-Based Virtual Screening Methods by Generating Synergy from the Integration of 2D and 3D Approaches.
    Fan N; Hirte S; Kirchmair J
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive comparative assessment of 3D molecular similarity tools in ligand-based virtual screening.
    Jiang Z; Xu J; Yan A; Wang L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34151363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of 3D queries for ROCS based virtual screens.
    Tawa GJ; Baber JC; Humblet C
    J Comput Aided Mol Des; 2009 Dec; 23(12):853-68. PubMed ID: 19820902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments.
    Ebalunode JO; Zheng W
    J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships.
    Miyao T; Jasial S; Bajorath J; Funatsu K
    J Comput Aided Mol Des; 2019 Aug; 33(8):729-743. PubMed ID: 31435894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening.
    Szilágyi K; Flachner B; Hajdú I; Szaszkó M; Dobi K; Lőrincz Z; Cseh S; Dormán G
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity.
    Quintus F; Sperandio O; Grynberg J; Petitjean M; Tuffery P
    BMC Bioinformatics; 2009 Aug; 10():245. PubMed ID: 19671127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Comparison of the Performance of Different 2D and 3D Ligand-Based Virtual Screening Methodologies to Discover Anticonvulsant Drugs.
    Di Ianni ME; Gantner ME; Ruiz ME; Castro EA; Bruno-Blanch LE; Talevi A
    Comb Chem High Throughput Screen; 2015; 18(4):387-98. PubMed ID: 25747440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction.
    Fan C; Wong PP; Zhao H
    J Chem Inf Model; 2020 Jan; 60(1):400-409. PubMed ID: 31833767
    [No Abstract]   [Full Text] [Related]  

  • 10. Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening.
    Hu G; Kuang G; Xiao W; Li W; Liu G; Tang Y
    J Chem Inf Model; 2012 May; 52(5):1103-13. PubMed ID: 22551340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-based virtual screening approach using a new scoring function.
    Hamza A; Wei NN; Zhan CG
    J Chem Inf Model; 2012 Apr; 52(4):963-74. PubMed ID: 22486340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.
    Awale M; Jin X; Reymond JL
    J Cheminform; 2015; 7():3. PubMed ID: 25750664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening.
    Liu X; Jiang H; Li H
    J Chem Inf Model; 2011 Sep; 51(9):2372-85. PubMed ID: 21819157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening.
    Tran-Nguyen VK; Jacquemard C; Rognan D
    J Chem Inf Model; 2020 Sep; 60(9):4263-4273. PubMed ID: 32282202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors.
    Krüger DM; Evers A
    ChemMedChem; 2010 Jan; 5(1):148-58. PubMed ID: 19908272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relevance of query definition in the performance of 3D ligand-based virtual screening.
    Vázquez J; García R; Llinares P; Luque FJ; Herrero E
    J Comput Aided Mol Des; 2024 Apr; 38(1):18. PubMed ID: 38573547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel and efficient ligand-based virtual screening approach using the HWZ scoring function and an enhanced shape-density model.
    Hamza A; Wei NN; Hao C; Xiu Z; Zhan CG
    J Biomol Struct Dyn; 2013; 31(11):1236-50. PubMed ID: 23140256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.
    Zhang Q; Muegge I
    J Med Chem; 2006 Mar; 49(5):1536-48. PubMed ID: 16509572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying new topoisomerase II poison scaffolds by combining publicly available toxicity data and 2D/3D-based virtual screening.
    Lovrics A; Pape VFS; Szisz D; Kalászi A; Heffeter P; Magyar C; Szakács G
    J Cheminform; 2019 Nov; 11(1):67. PubMed ID: 33430961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.