BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 35887098)

  • 21. Airway Inflammation and Host Responses in the Era of CFTR Modulators.
    Keown K; Brown R; Doherty DF; Houston C; McKelvey MC; Creane S; Linden D; McAuley DF; Kidney JC; Weldon S; Downey DG; Taggart CC
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32887484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation.
    Ortiz-Muñoz G; Yu MA; Lefrançais E; Mallavia B; Valet C; Tian JJ; Ranucci S; Wang KM; Liu Z; Kwaan N; Dawson D; Kleinhenz ME; Khasawneh FT; Haggie PM; Verkman AS; Looney MR
    J Clin Invest; 2020 Apr; 130(4):2041-2053. PubMed ID: 31961827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting cystic fibrosis inflammation in the age of CFTR modulators: focus on macrophages.
    Gillan JL; Davidson DJ; Gray RD
    Eur Respir J; 2021 Jun; 57(6):. PubMed ID: 33303535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CFTR-dependent defect in alternatively-activated macrophages in cystic fibrosis.
    Tarique AA; Sly PD; Holt PG; Bosco A; Ware RS; Logan J; Bell SC; Wainwright CE; Fantino E
    J Cyst Fibros; 2017 Jul; 16(4):475-482. PubMed ID: 28428011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease.
    Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L
    J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of impaired macrophage functions in cystic fibrosis disease progression.
    Lévêque M; Le Trionnaire S; Del Porto P; Martin-Chouly C
    J Cyst Fibros; 2017 Jul; 16(4):443-453. PubMed ID: 27856165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neutrophil elastase-regulated macrophage sheddome/secretome and phagocytic failure.
    Ma J; Kummarapurugu AB; Hawkridge A; Ghosh S; Zheng S; Voynow JA
    Am J Physiol Lung Cell Mol Physiol; 2021 Sep; 321(3):L555-L565. PubMed ID: 34261337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immune responses in cystic fibrosis: are they intrinsically defective?
    Ratner D; Mueller C
    Am J Respir Cell Mol Biol; 2012 Jun; 46(6):715-22. PubMed ID: 22403802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis.
    Öz HH; Cheng EC; Di Pietro C; Tebaldi T; Biancon G; Zeiss C; Zhang PX; Huang PH; Esquibies SS; Britto CJ; Schupp JC; Murray TS; Halene S; Krause DS; Egan ME; Bruscia EM
    Cell Rep; 2022 Dec; 41(11):111797. PubMed ID: 36516754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages.
    Di Pietro C; Zhang PX; O'Rourke TK; Murray TS; Wang L; Britto CJ; Koff JL; Krause DS; Egan ME; Bruscia EM
    Sci Rep; 2017 Sep; 7(1):10882. PubMed ID: 28883468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-inflammatory effects of lenabasum, a cannabinoid receptor type 2 agonist, on macrophages from cystic fibrosis.
    Tarique AA; Evron T; Zhang G; Tepper MA; Morshed MM; Andersen ISG; Begum N; Sly PD; Fantino E
    J Cyst Fibros; 2020 Sep; 19(5):823-829. PubMed ID: 32387042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Personalized medicine in CF: from modulator development to therapy for cystic fibrosis patients with rare CFTR mutations.
    Harutyunyan M; Huang Y; Mun KS; Yang F; Arora K; Naren AP
    Am J Physiol Lung Cell Mol Physiol; 2018 Apr; 314(4):L529-L543. PubMed ID: 29351449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations of Cystic Fibrosis Transmembrane Conductance Regulator Gene Cause a Monocyte-Selective Adhesion Deficiency.
    Sorio C; Montresor A; Bolomini-Vittori M; Caldrer S; Rossi B; Dusi S; Angiari S; Johansson JE; Vezzalini M; Leal T; Calcaterra E; Assael BM; Melotti P; Laudanna C
    Am J Respir Crit Care Med; 2016 May; 193(10):1123-33. PubMed ID: 26694899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myeloid CFTR loss-of-function causes persistent neutrophilic inflammation in cystic fibrosis.
    Ng HP; Jennings S; Wellems D; Sun F; Xu J; Nauseef WM; Wang G
    J Leukoc Biol; 2020 Dec; 108(6):1777-1785. PubMed ID: 32531843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages.
    Lamothe J; Valvano MA
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3825-3834. PubMed ID: 19047750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophage dysfunction in cystic fibrosis: Nature or nurture?
    Turton KB; Ingram RJ; Valvano MA
    J Leukoc Biol; 2021 Mar; 109(3):573-582. PubMed ID: 32678926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. (R)-Roscovitine and CFTR modulators enhance killing of multi-drug resistant Burkholderia cenocepacia by cystic fibrosis macrophages.
    Shrestha CL; Zhang S; Wisniewski B; Häfner S; Elie J; Meijer L; Kopp BT
    Sci Rep; 2020 Dec; 10(1):21700. PubMed ID: 33303916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Extrapulmonary Effects of Cystic Fibrosis Transmembrane Conductance Regulator Modulators in Cystic Fibrosis.
    Sergeev V; Chou FY; Lam GY; Hamilton CM; Wilcox PG; Quon BS
    Ann Am Thorac Soc; 2020 Feb; 17(2):147-154. PubMed ID: 31661636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs.
    Keiser NW; Birket SE; Evans IA; Tyler SR; Crooke AK; Sun X; Zhou W; Nellis JR; Stroebele EK; Chu KK; Tearney GJ; Stevens MJ; Harris JK; Rowe SM; Engelhardt JF
    Am J Respir Cell Mol Biol; 2015 Jun; 52(6):683-94. PubMed ID: 25317669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis.
    Delion M; Braux J; Jourdain ML; Guillaume C; Bour C; Gangloff S; Pimpec-Barthes FL; Sermet-Gaudelus I; Jacquot J; Velard F
    J Pathol; 2016 Sep; 240(1):50-60. PubMed ID: 27235726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.