BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35888016)

  • 1. ITGβ6 Facilitates Skeletal Muscle Development by Maintaining the Properties and Cytoskeleton Stability of Satellite Cells.
    Zhang H; Liu Y; Li C; Zhang W
    Life (Basel); 2022 Jun; 12(7):. PubMed ID: 35888016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidermal Growth Factor - based adhesion substrates elicit myoblast scattering, proliferation, differentiation and promote satellite cell myogenic activation.
    D'Andrea P; Sciancalepore M; Veltruska K; Lorenzon P; Bandiera A
    Biochim Biophys Acta Mol Cell Res; 2019 Mar; 1866(3):504-517. PubMed ID: 30343052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of transforming growth factor-beta on decorin and beta1 integrin expression during muscle development in chickens.
    Li X; McFarland DC; Velleman SG
    Poult Sci; 2006 Feb; 85(2):326-32. PubMed ID: 16523634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. USP7-dependent control of myogenin stability is required for terminal differentiation in skeletal muscle progenitors.
    de la Vega E; González N; Cabezas F; Montecino F; Blanco N; Olguín H
    FEBS J; 2020 Nov; 287(21):4659-4677. PubMed ID: 32115872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis.
    Bernardi H; Gay S; Fedon Y; Vernus B; Bonnieu A; Bacou F
    Am J Physiol Cell Physiol; 2011 May; 300(5):C1122-38. PubMed ID: 21248078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration.
    Bae JH; Hong M; Jeong HJ; Kim H; Lee SJ; Ryu D; Bae GU; Cho SC; Lee YS; Krauss RS; Kang JS
    J Cachexia Sarcopenia Muscle; 2020 Aug; 11(4):1089-1103. PubMed ID: 32103583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas.
    Florkowska A; Meszka I; Zawada M; Legutko D; Proszynski TJ; Janczyk-Ilach K; Streminska W; Ciemerych MA; Grabowska I
    Stem Cell Res Ther; 2020 Jun; 11(1):238. PubMed ID: 32552916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta1 integrin mediation of myogenic differentiation: implications for satellite cell differentiation.
    Velleman SG; McFarland DC
    Poult Sci; 2004 Feb; 83(2):245-52. PubMed ID: 14979576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle.
    Miretti S; Volpe MG; Martignani E; Accornero P; Baratta M
    Animal; 2017 Feb; 11(2):227-235. PubMed ID: 27406318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pax7 and myogenic progression in skeletal muscle satellite cells.
    Zammit PS; Relaix F; Nagata Y; Ruiz AP; Collins CA; Partridge TA; Beauchamp JR
    J Cell Sci; 2006 May; 119(Pt 9):1824-32. PubMed ID: 16608873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long Noncoding Ribonucleic Acid MSTRG.59589 Promotes Porcine Skeletal Muscle Satellite Cells Differentiation by Enhancing the Function of
    Li L; Cheng X; Chen L; Li J; Luo W; Li C
    Front Genet; 2019; 10():1220. PubMed ID: 31850071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA surveillance factor UPF1 regulates the migration and adhesion of porcine skeletal muscle satellite cells.
    Tan Y; Jin Y; Wang S; Cao J; Ren Z
    J Muscle Res Cell Motil; 2021 Jun; 42(2):203-217. PubMed ID: 32990898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway.
    Shefer G; Wleklinski-Lee M; Yablonka-Reuveni Z
    J Cell Sci; 2004 Oct; 117(Pt 22):5393-404. PubMed ID: 15466890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism.
    Zecchini S; Giovarelli M; Perrotta C; Morisi F; Touvier T; Di Renzo I; Moscheni C; Bassi MT; Cervia D; Sandri M; Clementi E; De Palma C
    Autophagy; 2019 Jan; 15(1):58-77. PubMed ID: 30081710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of transforming growth factor-β1-dependent integrin β6 expression by p38 mitogen-activated protein kinase in bile duct epithelial cells.
    Sullivan BP; Kassel KM; Manley S; Baker AK; Luyendyk JP
    J Pharmacol Exp Ther; 2011 May; 337(2):471-8. PubMed ID: 21303922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels.
    Palade J; Pal A; Rawls A; Stabenfeldt S; Wilson-Rawls J
    Acta Biomater; 2019 Oct; 97():296-309. PubMed ID: 31415920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular regulation of muscle stem cell function.
    Rudnicki MA; Le Grand F; McKinnell I; Kuang S
    Cold Spring Harb Symp Quant Biol; 2008; 73():323-31. PubMed ID: 19329572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The muscle integrin binding protein (MIBP) interacts with alpha7beta1 integrin and regulates cell adhesion and laminin matrix deposition.
    Li J; Rao H; Burkin D; Kaufman SJ; Wu C
    Dev Biol; 2003 Sep; 261(1):209-19. PubMed ID: 12941630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function.
    Sun C; De Mello V; Mohamed A; Ortuste Quiroga HP; Garcia-Munoz A; Al Bloshi A; Tremblay AM; von Kriegsheim A; Collie-Duguid E; Vargesson N; Matallanas D; Wackerhage H; Zammit PS
    Stem Cells; 2017 Aug; 35(8):1958-1972. PubMed ID: 28589555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TLE4 regulates muscle stem cell quiescence and skeletal muscle differentiation.
    Agarwal M; Bharadwaj A; Mathew SJ
    J Cell Sci; 2022 Feb; 135(4):. PubMed ID: 35099008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.