These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35888270)

  • 21. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration.
    Zapata-Solvas E; Gómez-García D; Domínguez-Rodríguez A; Todd RI
    Sci Rep; 2015 Feb; 5():8513. PubMed ID: 25686537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructure and Mechanical Properties of Y
    Wu Y; Huang Q; Zhang L; Jiang Y; Zhu G; Shen J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering.
    Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF
    Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.
    Yu YT; Naik GK; Lim YB; Yoon JM
    Nanoscale Res Lett; 2017 Nov; 12(1):606. PubMed ID: 29177596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling current flow in sintering: A facile method coupling flash with spark plasma sintering.
    Gorynski C; Anselmi-Tamburini U; Winterer M
    Rev Sci Instrum; 2020 Jan; 91(1):015112. PubMed ID: 32012646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics.
    Ahmad MM
    Nanoscale Res Lett; 2015; 10():58. PubMed ID: 25852355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering.
    Musa C; Licheri R; Orrù R; Cao G; Sciti D; Silvestroni L; Zoli L; Balbo A; Mercatelli L; Meucci M; Sani E
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Transparent Polycrystalline MgO via Spark Plasma Sintering.
    Sakajio M; Beilin V; Mann-Lahav M; Zamir S; Shter GE; Grader GS
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52108-52116. PubMed ID: 36331381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach.
    Ivakin YD; Smirnov AV; Kurmysheva AY; Kharlanov AN; Solís Pinargote NW; Smirnov A; Grigoriev SN
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated by Spark Plasma Sintering.
    Sokol M; Ratzker B; Kalabukhov S; Dariel MP; Galun E; Frage N
    Adv Mater; 2018 Oct; 30(41):e1706283. PubMed ID: 29920779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Combination of Calcination and the Spark Plasma Sintering Method in Multiferroic Ceramic Composite Technology: Effects of Process Temperature and Dwell Time.
    Bochenek D
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the Sintering Method on the Properties of a Multiferroic Ceramic Composite Based on PZT-Type Ferroelectric Material and Ni-Zn Ferrite.
    Bochenek D; Chrobak A; Dercz G
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bonding of TRIP-Steel/Al₂O₃-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus.
    Miriyev A; Grützner S; Krüger L; Kalabukhov S; Frage N
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Bi-Te
    Park MS; Koo HY; Ha GH; Park YH
    J Nanosci Nanotechnol; 2020 Jan; 20(1):427-432. PubMed ID: 31383189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical and Tribological Behavior of Mechanically Alloyed Ni-TiC Composites Processed via Spark Plasma Sintering.
    Walunj G; Bearden A; Patil A; Larimian T; Christudasjustus J; Gupta RK; Borkar T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering.
    Dutel GD; Langlois P; Tingaud D; Vrel D; Dirras G
    Data Brief; 2017 Apr; 11():61-67. PubMed ID: 28138505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Densification in transparent SiO
    Masai H; Kimura H; Kitamura N; Ikemoto Y; Kohara S; Masuno A; Fujii Y; Miyazaki T; Yanagida T
    Sci Rep; 2022 Aug; 12(1):14761. PubMed ID: 36042246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO₃/3Y-TZP Composites.
    Li J; Cui B; Wang H; Lin Y; Deng X; Li M; Nan C
    Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spark plasma sintering of hydroxyapatite powders.
    Gu YW; Loh NH; Kho KA; Tor SB; Cheang P
    Biomaterials; 2002 Jan; 23(1):37-43. PubMed ID: 11762852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and Characterization of a Nearly Single Bulk Ti
    Salvo C; Chicardi E; Poyato R; García-Garrido C; Jiménez JA; López-Pernía C; Tobosque P; Mangalaraja RV
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.