These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35888304)

  • 21. Design and Preliminary Validation of Individual Customized Insole for Adults with Flexible Flatfeet Based on the Plantar Pressure Redistribution.
    Jiang Y; Wang D; Ying J; Chu P; Qian Y; Chen W
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Powered Smart Insole for Monitoring Human Gait Signals.
    Wang W; Cao J; Yu J; Liu R; Bowen CR; Liao WH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life.
    Lueken M; Mueller L; Decker MG; Bollheimer C; Leonhardt S; Ngo C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An exploration of changes in plantar pressure distributions during walking with standalone and supported lateral wedge insole designs.
    Tse CTF; Ryan MB; Dien J; Scott A; Hunt MA
    J Foot Ankle Res; 2021 Oct; 14(1):55. PubMed ID: 34615545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review.
    Jourdan T; Debs N; Frindel C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Sensorised Insole for Sensing Feet Pressure Distributions.
    Sorrentino I; Andrade Chavez FJ; Latella C; Fiorio L; Traversaro S; Rapetti L; Tirupachuri Y; Guedelha N; Maggiali M; Dussoni S; Metta G; Pucci D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing and fabricating a novel medical insole with universal fluid layer with auto-customizability.
    Shakouri E; Mossayebi A; Manafi B
    Proc Inst Mech Eng H; 2020 Aug; 234(8):864-873. PubMed ID: 32423290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients.
    De Pascali C; Francioso L; Giampetruzzi L; Rescio G; Signore MA; Leone A; Siciliano P
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors.
    Sengupta D; Pei Y; Kottapalli AGP
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35201-35211. PubMed ID: 31460740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of plantar heel pressures: Insole design using finite element analysis.
    Goske S; Erdemir A; Petre M; Budhabhatti S; Cavanagh PR
    J Biomech; 2006; 39(13):2363-70. PubMed ID: 16197952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Nanocomposite-Based Strain Sensor with Piezoelectric and Piezoresistive Properties.
    Sanati M; Sandwell A; Mostaghimi H; Park SS
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible ferroelectric wearable devices for medical applications.
    Tsikriteas ZM; Roscow JI; Bowen CR; Khanbareh H
    iScience; 2021 Jan; 24(1):101987. PubMed ID: 33490897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Accurate Wearable Piezoresistive Sensors without Tension Disturbance Based on Weaved Conductive Yarn.
    Ding X; Zhong W; Jiang H; Li M; Chen Y; Lu Y; Ma J; Yadav A; Yang L; Wang D
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35638-35646. PubMed ID: 32658449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can Ensemble Deep Learning Identify People by Their Gait Using Data Collected from Multi-Modal Sensors in Their Insole?
    Moon J; Minaya NH; Le NA; Park HC; Choi SI
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks.
    Shalin G; Pardoel S; Lemaire ED; Nantel J; Kofman J
    J Neuroeng Rehabil; 2021 Nov; 18(1):167. PubMed ID: 34838066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Smart-Insole Dataset: Gait Analysis Using Wearable Sensors with a Focus on Elderly and Parkinson's Patients.
    Chatzaki C; Skaramagkas V; Tachos N; Christodoulakis G; Maniadi E; Kefalopoulou Z; Fotiadis DI; Tsiknakis M
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical effects of rocker shoes on plantar aponeurosis strain in patients with plantar fasciitis and healthy controls.
    Greve C; Schuitema D; Otten B; van Kouwenhove L; Verhaar E; Postema K; Dekker R; Hijmans JM
    PLoS One; 2019; 14(10):e0222388. PubMed ID: 31600227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wide-Range Motion Recognition Through Insole Sensor Using Multi-Walled Carbon Nanotubes and Polydimethylsiloxane Composites.
    Heo JS; Soleymanpour R; Lam J; Goldberg D; Large E; Park SK; Kim I
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):581-588. PubMed ID: 34255638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses.
    Vu HTT; Dong D; Cao HL; Verstraten T; Lefeber D; Vanderborght B; Geeroms J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.