These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 35888321)
1. Environmental Assessment of Carbon Concrete Based on Life-Cycle Wide Climate, Material, Energy and Water Footprints. Mostert C; Bock J; Sameer H; Bringezu S Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888321 [TBL] [Abstract][Full Text] [Related]
2. Advanced Carbon Reinforced Concrete Technologies for Façade Elements of Nearly Zero-Energy Buildings. Kraft R; Kahnt A; Grauer O; Thieme M; Wolz DS; Schlüter D; Tietze M; Curbach M; Holschemacher K; Jäger H; Böhm R Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208159 [TBL] [Abstract][Full Text] [Related]
3. Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland. Rinne R; Ilgın HE; Karjalainen M Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055595 [TBL] [Abstract][Full Text] [Related]
4. Environmental Assessment of Ultra-High-Performance Concrete Using Carbon, Material, and Water Footprint. Sameer H; Weber V; Mostert C; Bringezu S; Fehling E; Wetzel A Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871243 [TBL] [Abstract][Full Text] [Related]
5. Comparison of carbon footprints of steel versus concrete pipelines for water transmission. Chilana L; Bhatt AH; Najafi M; Sattler M J Air Waste Manag Assoc; 2016 May; 66(5):518-27. PubMed ID: 27064907 [TBL] [Abstract][Full Text] [Related]
6. Punching above its weight: life cycle energy accounting and environmental assessment of vanadium microalloying in reinforcement bar steel. Pradeep Kumar P; Santos DA; Braham EJ; Sellers DG; Banerjee S; Dixit MK Environ Sci Process Impacts; 2021 Mar; 23(2):275-290. PubMed ID: 33355560 [TBL] [Abstract][Full Text] [Related]
7. Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions-LCA Case Study. Laiblová L; Pešta J; Kumar A; Hájek P; Fiala C; Vlach T; Kočí V Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569478 [TBL] [Abstract][Full Text] [Related]
8. Life Cycle Assessment of River Sand and Aggregates Alternatives in Concrete. Anh LH; Mihai FC; Belousova A; Kucera R; Oswald KD; Riedel W; Sekar NA; Schneider P Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903179 [TBL] [Abstract][Full Text] [Related]
9. The nitrogen and carbon footprints of ammonia synthesis in China based on life cycle assessment. Li Y; Zhang Z; Wang Q; Long X; Cao Y; Yang H; Yang Q J Environ Manage; 2023 Nov; 345():118848. PubMed ID: 37660421 [TBL] [Abstract][Full Text] [Related]
10. A comparative life cycle assessment of recycling waste concrete powder into CO Kravchenko E; Sauerwein M; Besklubova S; Ng CWW J Environ Manage; 2024 Feb; 352():119947. PubMed ID: 38198842 [TBL] [Abstract][Full Text] [Related]
11. Carbon and water footprint analysis of pig farm buildings in Northeast China using building-information-modeling enabled assessment. Si B; Wang C; Cheng S; Ma X; Xu W; Wang Z; Li B; Wang Y; Shi Z; Jiang W Sci Total Environ; 2023 Aug; 888():164088. PubMed ID: 37201854 [TBL] [Abstract][Full Text] [Related]
12. Life Cycle Assessment of Completely Recyclable Concrete. De Schepper M; Van den Heede P; Van Driessche I; De Belie N Materials (Basel); 2014 Aug; 7(8):6010-6027. PubMed ID: 28788174 [TBL] [Abstract][Full Text] [Related]
13. Does carbon footprint reduction impair mechanical properties and service life of concrete? Ram K; Serdar M; Londono-Zuluaga D; Scrivener K Mater Struct; 2023; 56(1):6. PubMed ID: 36593923 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Hook and Straight Steel Fibers Addition on Malaysian Fly Ash-Based Geopolymer Concrete on the Slump, Density, Water Absorption and Mechanical Properties. Faris MA; Abdullah MMAB; Muniandy R; Abu Hashim MF; Błoch K; Jeż B; Garus S; Palutkiewicz P; Mohd Mortar NA; Ghazali MF Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803313 [TBL] [Abstract][Full Text] [Related]
15. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption. Hammond GP; Li B Glob Change Biol Bioenergy; 2016 Sep; 8(5):894-908. PubMed ID: 27610203 [TBL] [Abstract][Full Text] [Related]
16. Mechanical and Electrical Characteristics of Lightweight Aggregate Concrete Reinforced with Steel Fibers. Hong SH; Choi JS; Yuan TF; Yoon YS Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772028 [TBL] [Abstract][Full Text] [Related]
17. Application of Sustainable Bamboo-Based Composite Reinforcement in Structural-Concrete Beams: Design and Evaluation. Javadian A; Smith IFC; Hebel DE Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033099 [TBL] [Abstract][Full Text] [Related]
18. Seismic collapse assessment of bridge piers constructed with steel fibers reinforced concrete. Pang Y; Li L PLoS One; 2018; 13(7):e0200072. PubMed ID: 29990364 [TBL] [Abstract][Full Text] [Related]
19. Comparative life cycle assessment of light frame timber and reinforced concrete masonry structural systems for single-family houses in Luxembourg. Eslami H; Yaghma A; Jayasinghe LB; Waldmann D Heliyon; 2024 Feb; 10(4):e26083. PubMed ID: 38390173 [TBL] [Abstract][Full Text] [Related]
20. A Review on the Incorporation of Diatomaceous Earth as a Geopolymer-Based Concrete Building Resource. Kipsanai JJ; Wambua PM; Namango SS; Amziane S Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]